13 research outputs found

    Cholecalciferol Supplementation Attenuates Bone Loss in Incident Kidney Transplant Recipients: A Prespecified Secondary Endpoint Analysis of a Randomized Controlled Trial

    Full text link
    Vitamin D deficiency, persistent hyperparathyroidism, and bone loss are common after kidney transplantation (KTx). However, limited evidence exists regarding the effects of cholecalciferol supplementation on parathyroid hormone (PTH) and bone loss after KTx. In this prespecified secondary endpoint analysis of a randomized controlled trial, we evaluated changes in PTH, bone metabolic markers, and bone mineral density (BMD). At 1 month post-transplant, we randomized 193 patients to an 11-month intervention with cholecalciferol (4000 IU/d) or placebo. The median baseline 25-hydroxyvitamin D (25[OH]D) level was 10 ng/mL and 44% of participants had osteopenia or osteoporosis. At the end of the study, the median 25(OH)D level was increased to 40 ng/mL in the cholecalciferol group and substantially unchanged in the placebo group. Compared with placebo, cholecalciferol significantly reduced whole PTH concentrations (between-group difference of −15%; 95% confidence interval [CI] −25 to −3), with greater treatment effects in subgroups with lower 25(OH)D, lower serum calcium, or higher estimated glomerular filtration rate (pint < 0.05). The percent change in lumbar spine (LS) BMD from before KTx to 12 months post-transplant was −0.2% (95% CI −1.4 to 0.9) in the cholecalciferol group and −1.9% (95% CI −3.0 to −0.8) in the placebo group, with a significant between-group difference (1.7%; 95% CI 0.1 to 3.3). The beneficial effect of cholecalciferol on LS BMD was prominent in patients with low bone mass pint < 0.05). Changes in serum calcium, phosphate, bone metabolic markers, and BMD at the distal radius were not different between groups. In mediation analyses, change in whole PTH levels explained 39% of treatment effects on BMD change. In conclusion, 4000 IU/d cholecalciferol significantly reduced PTH levels and attenuated LS BMD loss after KTx. This regimen has the potential to eliminate vitamin D deficiency and provides beneficial effects on bone health even under glucocorticoid treatment. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).Tsujita M., Doi Y., Obi Y., et al. Cholecalciferol Supplementation Attenuates Bone Loss in Incident Kidney Transplant Recipients: A Prespecified Secondary Endpoint Analysis of a Randomized Controlled Trial. Journal of Bone and Mineral Research 37, 303 (2022); https://doi.org/10.1002/jbmr.4469

    The effect of cholecalciferol supplementation on allograft function in incident kidney transplant recipients: A randomized controlled study

    Full text link
    It is unknown whether cholecalciferol supplementation improves allograft outcomes in kidney transplant recipients (KTRs). We conducted a single-center randomized, double-blind, placebo-controlled trial of daily 4000 IU cholecalciferol supplementation in KTRs at 1-month posttransplant. The primary endpoint was the change in eGFR from baseline to 12-month posttransplant. Secondary endpoints included severity of interstitial fibrosis and tubular atrophy (IFTA) at 12-month posttransplant and changes in urinary biomarkers. Of 193 randomized patients, 180 participants completed the study. Changes in eGFR were 1.2 mL/min/1.73 m2 (95% CI; −0.7 to 3.1) in the cholecalciferol group and 1.8 mL/min/1.73 m2 (95% CI, −0.02 to 3.7) in the placebo group, with no significant between-group difference (−0.7 mL/min/1.73 m2 [95% CI; −3.3 to 2.0], p = 0.63). Subgroup analyses showed detrimental effects of cholecalciferol in patients with eGFR <45 mL/min/1.73 m2 (Pinteraction <0.05, between-group difference; −4.3 mL/min/1.73 m2 [95% CI; −7.3 to −1.3]). The degree of IFTA, changes in urine albumin-to-creatinine ratio, or adverse events including hypercalcemia and infections requiring hospitalization did not differ between groups. In conclusion, cholecalciferol supplementation did not affect eGFR change compared to placebo among incident KTRs. These findings do not support cholecalciferol supplementation for improving allograft function in incident KTRs. Clinical trial registry: This study was registered in the University Hospital Medical Information Network Clinical Trials Registry (UMIN-CTR) as UMIN000020597 (please refer to the links below). UMIN-CTR: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000023776.Doi Y., Tsujita M., Hamano T., et al. The effect of cholecalciferol supplementation on allograft function in incident kidney transplant recipients: A randomized controlled study. American Journal of Transplantation 21, 3043 (2021); https://doi.org/10.1111/ajt.16530

    Measurement of serum hepcidin-25 levels as a potential test for diagnosing hemochromatosis and related disorders

    Get PDF
    石川県立中央病院金沢大学医薬保健研究域医学系Iron overload syndromes include a wide spectrum of genetic and acquired conditions. Recent studies suggest suppressed hepcidin synthesis in the liver to be the molecular basis of hemochromatosis. However, a liver with acquired iron overload synthesizes an adequate amount of hepcidin. Thus, hepcidin could function as a biochemical marker for differential diagnosis of iron overload syndromes. Methods We measured serum iron parameters and hepcidin- 25 levels followed by sequencing HFE, HJV, HAMP, TFR2, and SLC40A1 genes in 13 Japanese patients with iron overload syndromes. In addition, we performed direct measurement of serum hepcidin-25 levels using liquid chromatography-tandem mass spectrometry in 3 Japanese patients with aceruloplasminemia and 4 Italians with HFE hemochromatosis. Results One patient with HJV hemochromatosis, 2 with TFR2 hemochromatosis, and 3 with ferroportin disease were found among the 13 Japanese patients. The remaining 7 Japanese patients showed no evidence for genetic basis of iron overload syndrome. As far as the serum hepcidin-25 was concerned, seven patients with hemochromatosis and 3 with aceruloplasminemia showed markedly decreased serum hepcidin-25 levels. In contrast, 3 patients with ferroportin disease and 7 with secondary iron overload syndromes showed serum hepcidin levels parallel to their hyperferritinemia. Patients with iron overload syndromes were divided into 2 phenotypes presenting as low and high hepcidinemia. These were then associated with their genotypes. Conclusion Determining serum hepcidin-25 levels may aid differential diagnosis of iron overload syndromes prior to genetic analysis. © Springer 2010

    T-Cell Epitopes Shared Between Immunizing HLA and Donor HLA Associate With Graft Failure After Kidney Transplantation

    Get PDF
    CD4(+) T-helper cells play an important role in alloimmune reactions following transplantation by stimulating humoral as well as cellular responses, which might lead to failure of the allograft. CD4(+) memory T-helper cells from a previous immunizing event can potentially be reactivated by exposure to HLA mismatches that share T-cell epitopes with the initial immunizing HLA. Consequently, reactivity of CD4(+) memory T-helper cells toward T-cell epitopes that are shared between immunizing HLA and donor HLA could increase the risk of alloimmunity following transplantation, thus affecting transplant outcome. In this study, the amount of T-cell epitopes shared between immunizing and donor HLA was used as a surrogate marker to evaluate the effect of donor-reactive CD4(+) memory T-helper cells on the 10-year risk of death-censored kidney graft failure in 190 donor/recipient combinations using the PIRCHE-II algorithm. The T-cell epitopes of the initial theoretical immunizing HLA and the donor HLA were estimated and the number of shared PIRCHE-II epitopes was calculated. We show that the natural logarithm-transformed PIRCHE-II overlap score, or Shared T-cell EPitopes (STEP) score, significantly associates with the 10-year risk of death-censored kidney graft failure, suggesting that the presence of pre-transplant donor-reactive CD4(+) memory T-helper cells might be a strong indicator for the risk of graft failure following kidney transplantation

    Intact parathyroid hormone levels localize causative glands in persistent or recurrent renal hyperparathyroidism: A retrospective cohort study.

    No full text
    Persistent or recurrent renal hyperparathyroidism may occur after total parathyroidectomy and transcervical thymectomy with forearm autograft under continuous stimulation due to uremia. Parathyroid hormone (PTH) levels may reflect persistent or recurrent renal hyperparathyroidism because of the enlarged autografted parathyroid glands in the forearm or remnant parathyroid glands in the neck or mediastinum. Detailed imaging requires predictive localization of causative parathyroid glands. Casanova and simplified Casanova tests may be convenient. However, these methods require avascularization of the autografted forearm for >10 min with a tourniquet or Esmarch. The heavy pressure during avascularization can be incredibly painful and result in nerve damage. An easier method that minimizes the burden on patients in addition to predicting the localization of causative parathyroid glands was developed in this study. Ninety patients who underwent successful re-parathyroidectomy for persistent or recurrent renal hyperparathyroidism after parathyroidectomy between January 2000 and July 2019 were classified according to the localization of causative parathyroid glands (63 and 27 patients in the autografted forearm and the neck or mediastinum groups, respectively). Preoperatively, intact PTH levels were measured from bilateral forearm blood samples following a 5-min avascularization of the autografted forearm. Cutoff values of the intact PTH ratio (intact PTH level obtained from the non-autografted forearm before re-parathyroidectomy/intact PTH level obtained from the autografted forearm before re-parathyroidectomy) were investigated with receiver operating characteristic curves to localize the causative parathyroid glands. Intact PTH ratios of 0.859 with an AUC 0.744 (95% CI: 0.587-0.901; P = 0.013) could predict causative parathyroid glands in the autografted forearm and the neck or mediastinum with diagnostic accuracies of 81.1% and 83.3%, respectively. Therefore, we propose that the intact PTH ratio is useful for predicting the localization of causative parathyroid glands for re-parathyroidectomy
    corecore