44 research outputs found

    Numerical simulation of interlaminar damage propagation in CFRP cross-ply laminates under transverse loading

    Get PDF
    AbstractThis paper proposes a numerical simulation of interlaminar damage propagation in FRP laminates under transverse loading, using the finite element method. First, we conducted drop-weight impact tests on CFRP cross-ply laminates. A ply crack was generated at the center of the lowermost ply, and then a butterfly-shaped interlaminar delamination was propagated at the 90/0 ply interface. Based on these experimental observations, we present a numerical simulation of interlaminar damage propagation, using a cohesive zone model to address the energy-based criterion for damage propagation. This simulation can address the interlaminar delamination with high accuracy by locating a fine mesh near the damage process zone, while maintaining computational efficiency with the use of automatic mesh generation. The simulated results of interlaminar delamination agreed well with the experiment results. Moreover, we demonstrated that the proposed method reduces the computational cost of the simulation

    Tensile Strength of Unidirectional Carbon Fiber-Reinforced Plastic Composites

    Get PDF
    The tensile strengths of unidirectionally aligned carbon fiber-reinforced plastic (UD-CFRP) were predicted by implementing a spring element model (SEM) that takes into account a stress concentration acting on an intact fiber surface originated from a fracture site in an neighboring fiber. The surface stress concentration was experimentally investigated by implementing multi-fiber fragmentation testing in combination with the SEM simulation. Four types of epoxy materials were selected to explore the effects of matrix polymer properties on the surface stress concentration. The size scaling results, coupled with the results of the SEM simulation, designed to take into account the surface stress concentration, were reasonably consistent with the experimentally obtained data on the tensile strengths of the UD-CFRP composites, irrespective of the differences in the matrix mechanical characteristics. The possible mechanisms by which additional stress concentration is generated on an intact fiber surface were analyzed numerically using the finite element method

    Global phase diagram and six-state clock universality behavior in the triangular antiferromagnetic Ising model with anisotropic next-nearest-neighbor coupling: Level-spectroscopy approach

    Full text link
    We investigate the triangular-lattice antiferromagnetic Ising model with a spatially anisotropic next-nearest-neighbor ferromagnetic coupling, which was first discussed by Kitatani and Oguchi. By employing the effective geometric factor, we analyze the scaling dimensions of the operators around the Berezinskii-Kosterlitz-Thouless (BKT) transition lines, and determine the global phase diagram. Our numerical data exhibit that two types of BKT-transition lines separate the intermediate critical region from the ordered and disordered phases, and they do not merge into a single curve in the antiferromagnetic region. We also estimate the central charge and perform some consistency checks among scaling dimensions in order to provide the evidence of the six-state clock universality. Further, we provide an analysis of the shapes of boundaries based on the crossover argument.Comment: 8 pages, 5 figure

    Numerical Prediction of Fatigue Damage Progress in Holed CFRP Laminates Using Cohesive Elements

    No full text

    The Influence of the Interfaces on the Fracture Strain of Fiber Reinforced Ceramic Composites

    No full text
    corecore