84 research outputs found

    Phosphate Import in Plants: Focus on the PHT1 Transporters

    Get PDF
    The main source of phosphorus for plants is inorganic phosphate (Pi), which is characterized by its poor availability and low mobility. Uptake of this element from the soil relies heavily upon the PHT1 transporters, a specific family of plant plasma membrane proteins that were identified by homology with the yeast PHO84 Pi transporter. Since the discovery of PHT1 transporters in 1996, various studies have revealed that their function is controlled by a highly complex network of regulation. This review will summarize the current state of research on plant PHT1 multigenic families, including physiological, biochemical, molecular, cellular, and genetics studies

    Double strand break repair by capture of retrotransposon sequences and reverse-transcribed spliced mRNA sequences in mouse zygotes

    Get PDF
    Ono, R., Ishii, M., Fujihara, Y. et al. Double strand break repair by capture of retrotransposon sequences and reverse-transcribed spliced mRNA sequences in mouse zygotes. Sci Rep 5, 12281 (2015). https://doi.org/10.1038/srep1228

    Regulation of Pancreatic β Cell Mass by Cross-Interaction between CCAAT Enhancer Binding Protein β Induced by Endoplasmic Reticulum Stress and AMP-Activated Protein Kinase Activity

    Get PDF
    During the development of type 2 diabetes, endoplasmic reticulum (ER) stress leads to not only insulin resistance but also to pancreatic beta cell failure. Conversely, cell function under various stressed conditions can be restored by reducing ER stress by activating AMP-activated protein kinase (AMPK). However, the details of this mechanism are still obscure. Therefore, the current study aims to elucidate the role of AMPK activity during ER stress-associated pancreatic beta cell failure. MIN6 cells were loaded with 5-amino-1-ϐ-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) and metformin to assess the relationship between AMPK activity and CCAAT enhancer binding protein ϐ (C/EBPϐ) expression levels. The effect of C/EBPϐ phosphorylation on expression levels was also investigated. Vildagliptin and metformin were administered to pancreatic beta cell-specific C/EBPϐ transgenic mice to investigate the relationship between C/EBPϐ expression levels and AMPK activity in the pancreatic islets. When pancreatic beta cells are exposed to ER stress, the accumulation of the transcription factor C/EBPϐ lowers the AMP/ATP ratio, thereby decreasing AMPK activity. In an opposite manner, incubation of MIN6 cells with AICAR or metformin activated AMPK, which suppressed C/EBPϐ expression. In addition, administration of the dipeptidyl peptidase-4 inhibitor vildagliptin and metformin to pancreatic beta cell-specific C/EBPϐ transgenic mice decreased C/EBPϐ expression levels and enhanced pancreatic beta cell mass in proportion to the recovery of AMPK activity. Enhanced C/EBPϐ expression and decreased AMPK activity act synergistically to induce ER stress-associated pancreatic beta cell failure

    D-braneworld cosmology

    Full text link
    We discuss D-braneworld cosmology, that is, the brane is described by the Born-Infeld action. Compared with the usual Randall-Sundrum braneworld cosmology where the brane action is the Nambu-Goto one, we can see some drastic changes at the very early universe: (i)universe may experience the rapid accelerating phase (ii)the closed universe may avoid the initial singularity. We also briefly address the dynamics of the cosmology in the open string metric, which might be favorer than the induced metric from the view point of the D-brane.Comment: 6 pages, 3 figures, minor corrections, accepted for publication in Phys. Rev.

    Association between low-dose pulsed intravenous cyclophosphamide therapy and amenorrhea in patients with systemic lupus erythematosus: A case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The risk for amenorrhea following treatment of systemic lupus erythematosus (SLE) patients with low-dose intravenous cyclophosphamide (IVCY) has not been fully explored. Our objective was to ascertain the incidence of amenorrhea following treatment with low-dose IVCY and the association between amenorrhea and the clinical parameters of SLE.</p> <p>Methods</p> <p>A case-control retrospective study of premenopausal women ≤ 45 years old who had been treated for SLE with low-dose IVCY (500 mg/body/pulse) plus high-dose glucocorticoids (0.8-1.0 mg/kg/day of prednisolone; IVCY group) or glucocorticoids alone (0.8-1.0 mg/kg/day of prednisolone; steroid group) in our hospital from 2000 through 2009 was conducted using a questionnaire survey and medical record review.</p> <p>Results</p> <p>Twenty-nine subjects in the IVCY group and 33 subjects in the steroid group returned the questionnaire. A multivariate analysis revealed that age at initiation of treatment ≥ 40 years old was significantly associated with amenorrhea [<it>p </it>= 0.009; odds ratio (OR) 10.2; 95% confidence interval (CI) 1.8-58.7]. IVCY treatment may display a trend for association with amenorrhea (<it>p </it>= 0.07; OR 2.9; 95% CI 0.9-9.4). Sustained amenorrhea developed in 4 subjects in the IVCY group and 1 subject in the steroid group; all of these patients were ≥ 40 years old. Menses resumed in all subjects < 40 years old, irrespective of treatment.</p> <p>Conclusions</p> <p>Although low-dose IVCY may increase the risk for amenorrhea, our data suggest that patients < 40 years old have a minimum risk for sustained amenorrhea with low-dose IVCY treatment. A higher risk for sustained amenorrhea following treatment with IVCY is a consideration for patients ≥ 40 years old.</p

    Acetic Acid Treatment Enhances Drought Avoidance in Cassava (Manihot esculenta Crantz)

    Get PDF
    The external application of acetic acid has recently been reported to enhance survival of drought in plants such as Arabidopsis, rapeseed, maize, rice, and wheat, but the effects of acetic acid application on increased drought tolerance in woody plants such as a tropical crop “cassava” remain elusive. A molecular understanding of acetic acid-induced drought avoidance in cassava will contribute to the development of technology that can be used to enhance drought tolerance, without resorting to transgenic technology or advancements in cassava cultivation. In the present study, morphological, physiological, and molecular responses to drought were analyzed in cassava after treatment with acetic acid. Results indicated that the acetic acid-treated cassava plants had a higher level of drought avoidance than water-treated, control plants. Specifically, higher leaf relative water content, and chlorophyll and carotenoid levels were observed as soils dried out during the drought treatment. Leaf temperatures in acetic acid-treated cassava plants were higher relative to leaves on plants pretreated with water and an increase of ABA content was observed in leaves of acetic acid-treated plants, suggesting that stomatal conductance and the transpiration rate in leaves of acetic acid-treated plants decreased to maintain relative water contents and to avoid drought. Transcriptome analysis revealed that acetic acid treatment increased the expression of ABA signaling-related genes, such as OPEN STOMATA 1 (OST1) and protein phosphatase 2C; as well as the drought response and tolerance-related genes, such as the outer membrane tryptophan-rich sensory protein (TSPO), and the heat shock proteins. Collectively, the external application of acetic acid enhances drought avoidance in cassava through the upregulation of ABA signaling pathway genes and several stress responses- and tolerance-related genes. These data support the idea that adjustments of the acetic acid application to plants is useful to enhance drought tolerance, to minimize the growth inhibition in the agricultural field

    Ablation of TSC2 Enhances Insulin Secretion by Increasing the Number of Mitochondria through Activation of mTORC1

    Get PDF
    ) mice. The present study examines the effects of TSC2 ablation on insulin secretion from pancreatic beta cells. mice and TSC2 knockdown insulin 1 (INS-1) insulinoma cells treated with small interfering ribonucleic acid were used to investigate insulin secretion, ATP content and the expression of mitochondrial genes. mice exhibit hyperinsulinemia due to an increase in the number of mitochondria as well as enlargement of individual beta cells via activation of mTORC1.Activation of mTORC1 by TSC2 ablation increases mitochondrial biogenesis and enhances insulin secretion from pancreatic beta cells
    corecore