29 research outputs found

    Human Induced Pluripotent Stem Cells on Autologous Feeders

    Get PDF
    BACKGROUND: For therapeutic usage of induced Pluripotent Stem (iPS) cells, to accomplish xeno-free culture is critical. Previous reports have shown that human embryonic stem (ES) cells can be maintained in feeder-free condition. However, absence of feeder cells can be a hostile environment for pluripotent cells and often results in karyotype abnormalities. Instead of animal feeders, human fibroblasts can be used as feeder cells of human ES cells. However, one still has to be concerned about the existence of unidentified pathogens, such as viruses and prions in these non-autologous feeders. METHODOLOGY/PRINCIPAL FINDINGS: This report demonstrates that human induced Pluripotent Stem (iPS) cells can be established and maintained on isogenic parental feeder cells. We tested four independent human skin fibroblasts for the potential to maintain self-renewal of iPS cells. All the fibroblasts tested, as well as their conditioned medium, were capable of maintaining the undifferentiated state and normal karyotypes of iPS cells. Furthermore, human iPS cells can be generated on isogenic parental fibroblasts as feeders. These iPS cells carried on proliferation over 19 passages with undifferentiated morphologies. They expressed undifferentiated pluripotent cell markers, and could differentiate into all three germ layers via embryoid body and teratoma formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that autologous fibroblasts can be not only a source for iPS cells but also be feeder layers. Our results provide a possibility to solve the dilemma by using isogenic fibroblasts as feeder layers of iPS cells. This is an important step toward the establishment of clinical grade iPS cells

    Identification and targeted disruption of the mouse gene encoding ESG1 (PH34/ECAT2/DPPA5)

    Get PDF
    BACKGROUND: Embryonic stem cell-specific gene (ESG) 1, which encodes a KH-domain containing protein, is specifically expressed in early embryos, germ cells, and embryonic stem (ES) cells. Previous studies identified genomic clones containing the mouse ESG1 gene and five pseudogenes. However, their chromosomal localizations or physiological functions have not been determined. RESULTS: A Blast search of mouse genomic databases failed to locate the ESG1 gene. We identified several bacterial artificial clones containing the mouse ESG1 gene and an additional ESG1-like sequence with a similar gene structure from chromosome 9. The ESG1-like sequence contained a multiple critical mutations, indicating that it was a duplicated pseudogene. The 5' flanking region of the ESG1 gene, but not that of the pseudogene, exhibited strong enhancer and promoter activity in undifferentiated ES cells by luciferase reporter assay. To study the physiological functions of the ESG1 gene, we replaced this sequence in ES cells with a β-geo cassette by homologous recombination. Despite specific expression in early embryos and germ cells, ESG1(-/- )mice developed normally and were fertile. We also generated ESG1(-/- )ES cells both by a second independent homologous recombination and directly from blastocysts derived from heterozygous intercrosses. Northern blot and western blot analyses confirmed the absence of ESG1 in these cells. These ES cells demonstrated normal morphology, proliferation, and differentiation. CONCLUSION: The mouse ESG1 gene, together with a duplicated pseudogene, is located on chromosome 9. Despite its specific expression in pluripotent cells and germ cells, ESG1 is dispensable for self-renewal of ES cells and establishment of germcells

    Nanog co-regulated by Nodal/Smad2 and Oct4 is required for pluripotency in developing mouse epiblast

    Get PDF
    AbstractNanog, a core pluripotency factor, is required for stabilizing pluripotency of inner cell mass (ICM) and embryonic stem cells (ESCs), and survival of primordial germ cells in mice. Here, we have addressed function and regulation of Nanog in epiblasts of postimplantation mouse embryos by conditional knockdown (KD), chromatin immunoprecipitation (ChIP) using in vivo epiblasts, and protein interaction with the Nanog promoter in vitro. Differentiation of Nanog-KD epiblasts demonstrated requirement for Nanog in stabilization of pluripotency. Nanog expression in epiblast is directly regulated by Nodal/Smad2 pathway in a visceral endoderm-dependent manner. Notably, Nanog promoters switch from Oct4/Esrrb in ICM/ESCs to Oct4/Smad2 in epiblasts. Smad2 directly associates with Oct4 to form Nanog promoting protein complex. Collectively, these data demonstrate that Nanog plays a key role in stabilizing Epiblast pluripotency mediated by Nodal/Smad2 signaling, which is involved in Nanog promoter switching in early developing embryos

    Transcriptional repression and DNA hypermethylation of a small set of ES cell marker genes in male germline stem cells

    Get PDF
    BACKGROUND: We previously identified a set of genes called ECATs (ES cell-associated transcripts) that are expressed at high levels in mouse ES cells. Here, we examine the expression and DNA methylation of ECATs in somatic cells and germ cells. RESULTS: In all ECATs examined, the promoter region had low methylation levels in ES cells, but higher levels in somatic cells. In contrast, in spite of their lack of pluripotency, male germline stem (GS) cells expressed most ECATs and exhibited hypomethylation of ECAT promoter regions. We observed a similar hypomethylation of ECAT loci in adult testis and isolated sperm. Some ECATs were even less methylated in male germ cells than in ES cells. However, a few ECATs were not expressed in GS cells, and most of them targets of Oct3/4 and Sox2. The Octamer/Sox regulatory elements were hypermethylated in these genes. In addition, we found that GS cells express little Sox2 protein and low Oct3/4 protein despite abundant expression of their transcripts. CONCLUSION: Our results suggest that DNA hypermethylation and transcriptional repression of a small set of ECATs, together with post-transcriptional repression of Oct3/4 and Sox2, contribute to the loss of pluripotency in male germ cells

    ECAT11/L1td1 Is Enriched in ESCs and Rapidly Activated During iPSCGeneration, but It Is Dispensable for the Maintenance and Induction of Pluripotency

    Get PDF
    The principal factors that lead to proliferation and pluripotency in embryonic stem cells (ESCs) have been vigorously investigated. However, the global network of factors and their full signaling cascade is still unclear. In this study, we found that ECAT11 (L1td1) is one of the ESC-associated transcripts harboring a truncated fragment of ORF-1, a component of theL1 retrotransposable element. We generated an ECAT11 knock-in mouse by replacing its coding region with green fluorescent protein. In the early stage of development, the fluorescence was observed at the inner cell mass of blastocysts and epiblasts. Despite this specific expression, ECAT11-null mice grow normally and are fertile. In addition, ECAT11 was dispensable for both the proliferation and pluripotency of ESCs.We found rapid and robust activation of ECAT11 in fibroblasts after the forced expression of transcription factors that can give rise pluripotency in somatic cells.However, iPS cells could be established from ECAT11-null fibroblasts. Our data demonstrate thedispensability of ECAT11/L1td1 in pluripotency, despite its specific expression

    Hypoxia Enhances the Generation of Induced Pluripotent Stem Cells

    Get PDF
    低酸素濃度培養によるiPS細胞樹立効率の改善 -効率的な樹立方法開発に貢献する知見をCell Stem Cellに報告-. 京都大学プレスリリース. 2009-08-28

    Promotion of direct reprogramming by transformation-deficient Myc

    Get PDF
    Induced pluripotent stem cells (iPSCs) are generated from mouse and human fibroblasts by the introduction of three transcription factors: Oct3/4, Sox2, and Klf4. The proto-oncogene product c-Myc markedly promotes iPSC generation, but also increases tumor formation in iPSC-derived chimeric mice. We report that the promotion of iPSC generation by Myc is independent of its transformation property. We found that another Myc family member, L-Myc, as well as c-Myc mutants (W136E and dN2), all of which have little transformation activity, promoted human iPSC generation more efficiently and specifically compared with WT c-Myc. In mice, L-Myc promoted germline transmission, but not tumor formation, in the iPSC-derived chimeric mice. These data demonstrate that different functional moieties of the Myc proto-oncogene products are involved in the transformation and promotion of directed reprogramming

    Essential Roles of ECAT15-2/Dppa2 in Functional Lung Development ▿ †

    Get PDF
    Many transcription factors and DNA binding proteins play essential roles in the development of organs in which they are highly and/or specifically expressed. Embryonic stem cell (ESC)-associated transcript 15-1 (ECAT15-1) and ECAT15-2, also known as developmental pluripotency-associated 4 (Dppa4) and Dppa2, respectively, are enriched in mouse ESCs and preimplantation embryos, and their genes encode homologous proteins with a common DNA binding domain known as the SAP motif. Previously, ECAT15-1 was shown to be important in lung development, while it is dispensable in early development. In this study, we generated ECAT15-2 single and ECAT15-1 ECAT15-2 double knockout (double KO) mice and found that almost all mutants, like ECAT15-1 mutants, died around birth with respiratory defects. Paradoxically, the expression of neither ECAT15-1 nor ECAT15-2 was detected in lung organogenesis. Several genes, such as Nkx2-5, Gata4, and Pitx2, were downregulated in the ECAT15-2-null lung. On the other hand, genomic DNA of these genes showed inactive chromatin statuses in ECAT15-2-null ESCs, but not in wild-type ESCs. The chromatin immunoprecipitation (ChIP) assay revealed that ECAT15-2 binds to the regulatory region of Nkx2-5 in ESCs. These data suggest that ECAT15-2 has important roles in lung development, where it is no longer expressed, by leaving epigenetic marks from earlier developmental stages
    corecore