74 research outputs found

    Simultaneous recovery of high-purity copper and polyvinyl chloride from thin electric cables by plasticizer extraction and ball milling

    Get PDF
    Herein, we introduce a combination of plasticizer extraction from polyvinyl chloride (PVC) and ball milling for the simultaneous, effective recovery of PVC and copper (Cu) from thin electric cables. PVC coverings typically contain plasticizers for flexibility. As such, PVC cables become brittle after plasticizer extraction, causing them to be easily crushed by physical impact. Hence, we extracted the plasticizers from the PVC coverings of electric cables using organic solvents, and then crushed the obtained cable samples by ball milling. The influences of the plasticizer extraction yield and PVC morphologies before and after extraction on separation by ball milling were investigated. After a series of treatments to PVC coverings including quantitatively de-plasticizing for 5 h by Soxhlet-extraction in diethyl ether, 6 h ball milling and 1 h shaking in the sieve shaker, a maximum separation rate of 77% was achieved and the purity of the obtained separated Cu reached >99.8%

    Selective phenol recovery via simultaneous hydrogenation/ dealkylation of isopropyl- and isopropenyl-phenols employing an H2 generator combined with tandem micro-reactor GC/MS

    Get PDF
    Abstract The pyrolysis of bisphenol A (BPA), an essential process ingredient used in industry and many everyday life products, helps produce low-industrial-demand chemicals such as isopropenyl- and isopropyl-phenols (IPP and iPrP). In this study, tandem micro-reactor gas chromatography/mass spectrometry combined with an H2 generator (H2-TR-GC/MS) was employed for the first time to investigate the selective recovery of phenol via simultaneous hydrogenation/dealkylation of IPP and iPrP. After investigating the iPrP dealkylation performances of several zeolites, we obtained full iPrP conversion with over 99% phenol selectivity using the Y-zeolite at 350 °C. In contrast, when applied to IPP, the zeolite acid centres caused IPP polymerisation and subsequent IPP-polymer cracking, resulting in many byproducts and reduced phenol selectivity. This challenge was overcome by the addition of 0.3 wt% Ni on the Y-zeolite (0.3Ni/Y), which enabled the hydrogenation of IPP into iPrP and subsequent dealkylation into phenol (full IPP conversion with 92% phenol selectivity). Moreover, the catalyst deactivation and product distribution over repetitive catalytic use were successfully monitored using the H2-TR-GC/MS system. We believe that the findings presented herein could allow the recovery of phenol-rich products from polymeric waste with BPA macro skeleton

    Discovery of a Long-duration Superflare on a Young Solar-type Star EK Draconis with Nearly Similar Time Evolution for H alpha and White-light Emissions

    Get PDF
    Young solar-type stars are known to show frequent "superflares, " which may severely influence the habitable worlds on young planets via intense radiation and coronal mass ejections. Here we report an optical spectroscopic and photometric observation of a long-duration superflare on the young solar-type star EK Draconis (50-120 Myr age) with the Seimei telescope and Transiting Exoplanet Survey Satellite. The flare energy 2.6 x 10³⁴ erg and white-light flare duration 2.2 hr are much larger than those of the largest solar flares, and this is the largest superflare on a solar-type star ever detected by optical spectroscopy. The H alpha emission profile shows no significant line asymmetry, meaning no signature of a filament eruption, unlike the only previous detection of a superflare on this star. Also, it did not show significant line broadening, indicating that the nonthermal heating at the flare footpoints is not essential or that the footpoints are behind the limb. The time evolution and duration of the H alpha flare are surprisingly almost the same as those of the white-light flare, which is different from general M-dwarf (super-)flares and solar flares. This unexpected time evolution may suggest that different radiation mechanisms than general solar flares are predominant, such as: (1) radiation from (off-limb) flare loops and (2) re-radiation via radiative back-warming, in both of which the cooling timescales of flare loops could determine the timescales of H alpha and white light

    Probable detection of an eruptive filament from a superflare on a solar-type star

    Get PDF
    太陽型星のスーパーフレアから噴出する巨大フィラメントを初検出 --昔の、そして今の惑星環境や文明に与える脅威--. 京都大学プレスリリース. 2021-12-10.Solar flares are often accompanied by filament/prominence eruptions (~10⁴ K and ~10¹⁰⁻¹¹ cm⁻³), sometimes leading to coronal mass ejections that directly affect the Earth’s environment. ‘Superflares’ are found on some active solar-type (G-type main-sequence) stars, but the filament eruption–coronal mass ejection association has not been established. Here we show that our optical spectroscopic observation of the young solar-type star EK Draconis reveals evidence for a stellar filament eruption associated with a superflare. This superflare emitted a radiated energy of 2.0 × 10³³ erg, and a blueshifted hydrogen absorption component with a high velocity of −510 km s⁻¹ was observed shortly afterwards. The temporal changes in the spectra strongly resemble those of solar filament eruptions. Comparing this eruption with solar filament eruptions in terms of the length scale and velocity strongly suggests that a stellar coronal mass ejection occurred. The erupted filament mass of 1.1 × 10¹⁸ g is ten times larger than those of the largest solar coronal mass ejections. The massive filament eruption and an associated coronal mass ejection provide the opportunity to evaluate how they affect the environment of young exoplanets/the young Earth6 and stellar mass/angular momentum evolution
    corecore