492 research outputs found
Quantum Effect and Curvature Strength of Naked Singularities
There are many solutions to the Einstein field equations that demonstrate
naked singularity (NS) formation after regular evolution. It is possible,
however, that such a quantum effect as particle creation prevents NSs from
forming. We investigate the relation between the curvature strength and the
quantum effects of NSs in a very wide class of spherical dust collapse. Through
a perturbative calculation, we find that if the NS is very strong, the quantum
particle creation diverges as the Cauchy horizon is approached, while if the NS
is very weak, the creation should be finite. In the context of cosmic
censorship, strong NSs will be subjected to the backreaction of quantum effects
and may disappear or be hidden behind horizons, while weak NSs will not.Comment: 21 pages, 1 table, 3 figures. Final version to appear in Progress of
Theoretical Physic
Conformally Schwarzschild cosmological black holes
We thoroughly investigate conformally Schwarzschild spacetimes in different
coordinate systems to seek for physically reasonable models of a cosmological
black hole. We assume that a conformal factor depends only on the time
coordinate and that the spacetime is asymptotically flat
Friedmann-Lema\^{\i}tre-Robertson-Walker universe filled by a perfect fluid
obeying a linear equation state with . In this class of
spacetimes, the McClure-Dyer spacetime, constructed in terms of the isotropic
coordinates, and the Thakurta spacetime, constructed in terms of the standard
Schwarzschild coordinates, are identical and do not describe a cosmological
black hole. In contrast, the Sultana-Dyer and Culetu classes of spacetimes,
constructed in terms of the Kerr-Schild and Painlev\'{e}-Gullstrand
coordinates, respectively, describe a cosmological black hole. In the
Sultana-Dyer case, the corresponding matter field in general relativity can be
interpreted as a combination of a homogeneous perfect fluid and an
inhomogeneous null fluid, which is valid everywhere in the spacetime unlike
Sultana and Dyer's interpretation. In the Culetu case, the matter field can be
interpreted as a combination of a homogeneous perfect fluid and an
inhomogeneous anisotropic fluid. However, in both cases, the total
energy-momentum tensor violates all the standard energy conditions at a finite
value of the radial coordinate in late times. As a consequence, the
Sultana-Dyer and Culetu black holes for cannot describe the
evolution of a primordial black hole after its horizon entry.Comment: 58 pages, 10 figures, 8 tables; v3, this version corrects the
published version according to the corrigendum (2023 Class. Quantum Grav. 40,
079501). The main results remain unchange
Kinesthetic Illusion of Being Pulled Sensation Enables Haptic Navigation for Broad Social Applications
Many handheld force-feedback devices have been proposed to provide a rich experience with mobile devices. However, previously reported devices have been unable to generate both constant and translational force. They can only generate transient rotational force since they use a change in angular momentum. Here, we exploit the nonlinearity of human perception to generate both constant and translational force. Specifically, a strong acceleration is generated for a very brief period in the desired direction, while a weaker acceleration is generated over a longer period in the opposite direction. The internal human haptic sensors do not detect the weaker acceleration, so the original position of the mass is \"washed out\". The result is that the user is tricked into perceiving a unidirectional force. This force can be made continuous by repeating the motions. This chapter describes the pseudoattraction force technique, which is a new force feedback technique that enables mobile devices to create a the sensation of two-dimensional force. A prototype was fabricated in which four slider-crank mechanism pairs were arranged in a cross shape and embedded in a force feedback display. Each slider-crank mechanism generates a force vector. By using the sum of the generated vectors, which are linearly independent, the force feedback display can create a force sensation in any arbitrary direction on a two-dimensional plane. We also introduce an interactive application with the force feedback display, an interactive robot, and a vision-based positioning system
IκB kinase β–induced phosphorylation of CARMA1 contributes to CARMA1–Bcl10–MALT1 complex formation in B cells
Protein kinase C (PKC) β has been reported (Shinohara, H., T. Yasuda, Y. Aiba, H. Sanjo, M. Hamadate, H. Watarai, H. Sakurai, and T. Kurosaki. 2005. J. Exp. Med. 202:1423–1431; Sommer, K., B. Guo, J.L. Pomerantz, A.D. Bandaranayake, M.E. Moreno-Garcia, Y.L. Ovechkina, and D.J. Rawlings. 2005. Immunity. 23:561–574) to play a crucial role in B cell receptor (BCR)–mediated IκB kinase (IKK) activation through phosphorylation of caspase recruitment domain 11, Bimp3 (CARMA1). However, it remains unclear whether this PKCβ-mediated phosphorylation accounts fully for the activation status of CARMA1, because involvement of other kinases, such as phosphoinositide 3-kinase–dependent kinase 1, has also been suggested. We show that PKCβ mediates phosphorylation of CARMA1 on Ser668, which in turn is essential for BCR-mediated CARMA1–Bcl10–mucosal-associated lymphoid tissue 1 (MALT1) association and subsequent IKK activation. Our analyses also demonstrate that the downstream kinase IKKβ contributes to facilitating formation of the complex CARMA1–Bcl10–MALT1 by mediating phosphorylation of CARMA1. Hence, our data suggest that PKCβ is crucial for initial activation of IKK. The activated IKKβ does not merely function as an effector enzyme but also modifies the upstream signaling complex through a feedback mechanism, thereby optimizing the strength and duration of the nuclear factor κB signal
- …