376 research outputs found

    Dynamical Study of Polydisperse Hard-Sphere System

    Full text link
    We study the interplay between the fluid-crystal transition and the glass transition of elastic sphere system with polydispersity using nonequilibrium molecular dynamics simulations. It is found that the end point of the crystal-fluid transition line, which corresponds to the critical polydispersity above which the crystal state is unstable, is on the glass transition line. This means that crystal and fluid states at the melting point becomes less distinguishable as polydispersity increases and finally they become identical state, i.e., marginal glass state, at critical polydispersity.Comment: 5 pages, 5 figure

    Static and dynamical aspects of the metastable states of first order transition systems

    Get PDF
    We numerically study the metastable states of the 2d Potts model. Both of equilibrium and relaxation properties are investigated focusing on the finite size effect. The former is investigated by finding the free energy extremal point by the Wang-Landau sampling and the latter is done by observing the Metropolis dynamics after sudden heating. It is explicitly shown that with increasing system size the equilibrium spinodal temperature approaches the bistable temperature in a power-law and the size-dependence of the nucleation dynamics agrees with it. In addition, we perform finite size scaling of the free energy landscape at the bistable point.Comment: 8 pages, 6 figures, submitted to Physics Procedia as a proceedings of the 24th Annual CSP Workshop at the University of Georgi

    Molecular Dynamics Study of Rotating Nanodroplets: Finite-size Effects and Nonequilibrium Deformation

    Full text link
    Noneqiuilibrium dynamics of rotating droplets are studied by molecular dynamics simulations. Small deviations from the theoretical prediction are observed when the size of a droplet is small, and the deviations become smaller as the size of the droplet increases. The characteristic timescale of the deformation is observed, and we find (i) the deformation timescale is almost independent of the rotating velocity with for small frequency and (ii) the deformation timescale becomes shorter as temperature increases. A simple model is proposed to explain the deformation dynamics of droplets.Comment: 14 pages, 8 figure, added references, changed titl

    Scalar Transfer across a Turbulent/non-turbulent Interface in a Planar Jet

    Full text link
    This fluid dynamics video is an entry for the Gallery of Fluid Motion of the 66th Annual Meeting of the APS-DFD. In this video, the scalar transfer across the turbulent/non-turbulent (T/NT) interface in a planar jet is investigated by using a direct numerical simulation. Visualization of the scalar flux across the T/NT interface shows that the diffusive species premixed in the ambient flow is transferred into the turbulent region mainly across the leading edge (Here, the leading edge is the T/NT interface across which the turbulent fluid turns into the non-turbulent fluid in the streamwise direction).Comment: The fluid dynamics video for an entry for the Gallery of Fluid Motion of the 66th Annual Meeting of the APS-DFD is include

    Circadian-period variation underlies the local adaptation of photoperiodism in the short-day plant Lemna aequinoctialis

    Get PDF
    Phenotypic variation is the basis for trait adaptation via evolutionary selection. However, the driving forces behind quantitative trait variations remain unclear owing to their complexity at the molecular level. This study focused on the natural variation of the free-running period (FRP) of the circadian clock because FRP is a determining factor of the phase phenotype of clock-dependent physiology. Lemna aequinoctialis in Japan is a paddy field duckweed that exhibits a latitudinal cline of critical day length (CDL) for short-day flowering. We collected 72 strains of L. aequinoctialis and found a significant correlation between FRPs and locally adaptive CDLs, confirming that variation in the FRP-dependent phase phenotype underlies photoperiodic adaptation. Diel transcriptome analysis revealed that the induction timing of an FT gene is key to connecting the clock phase to photoperiodism at the molecular level. This study highlights the importance of FRP as a variation resource for evolutionary adaptation

    CFD-based Evaluation of Interfacial Flows

    Get PDF

    Usefulness of an equal-probability assumption for out-of-equilibrium states: a master equation approach

    Full text link
    We examine the effectiveness of assuming an equal probability for states far from equilibrium. For this aim, we propose a method to construct a master equation for extensive variables describing non-stationary nonequilibrium dynamics. The key point of the method is the assumption that transient states are equivalent to the equilibrium state that has the same extensive variables, i.e., an equal probability holds for microscopic states in nonequilibrium. We demonstrate an application of this method to the critical relaxation of the two-dimensional Potts model by Monte Carlo simulations. While the one-variable description, which is adequate for equilibrium, yields relaxation dynamics that are very fast, redundant two-variable description well reproduces the true dynamics quantitatively. These results suggest that some class of the nonequilibrium state can be described with a small extension of degrees of freedom, which may lead to an alternative way to understand nonequilibrium phenomena.Comment: 9 pages, 7 figure
    corecore