40 research outputs found

    Combining Hypoxia and Bioreactor Hydrodynamics Boosts Induced Pluripotent Stem Cell Differentiation Towards Cardiomyocytes

    Get PDF
    Cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPSCs) hold great promise for patient-specific disease modeling, drug screening and cell therapy. However, existing protocols for CM differentiation of iPSCs besides being highly dependent on the application of expensive growth factors show low reproducibility and scalability. The aim of this work was to develop a robust and scalable strategy for mass production of iPSC-derived CMs by designing a bioreactor protocol that ensures a hypoxic and mechanical environment. Murine iPSCs were cultivated as aggregates in either stirred tank or WAVE bioreactors. The effect of dissolved oxygen and mechanical forces, promoted by different hydrodynamic environments, on CM differentiation was evaluated. Combining a hypoxia culture (4 % O(2) tension) with an intermittent agitation profile in stirred tank bioreactors resulted in an improvement of about 1000-fold in CM yields when compared to normoxic (20 % O(2) tension) and continuously agitated cultures. Additionally, we showed for the first time that wave-induced agitation enables the differentiation of iPSCs towards CMs at faster kinetics and with higher yields (60 CMs/input iPSC). In an 11-day differentiation protocol, clinically relevant numbers of CMs (2.3 × 10(9) CMs/1 L) were produced, and CMs exhibited typical cardiac sarcomeric structures, calcium transients, electrophysiological profiles and drug responsiveness. This work describes significant advances towards scalable cardiomyocyte differentiation of murine iPSC, paving the way for the implementation of this strategy for mass production of their human counterparts and their use for cardiac repair and cardiovascular research. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12015-014-9533-0) contains supplementary material, which is available to authorized users

    Global transcriptional profiles of beating clusters derived from human induced pluripotent stem cells and embryonic stem cells are highly similar

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functional and molecular integrity of cardiomyocytes (CMs) derived from induced pluripotent stem (iPS) cells is essential for their use in tissue repair, disease modelling and drug screening. In this study we compared global transcriptomes of beating clusters (BCs) microdissected from differentiating human iPS cells and embryonic stem (ES) cells.</p> <p>Results</p> <p>Hierarchical clustering and principal component analysis revealed that iPS-BCs and ES-BCs cluster together, are similarly enriched for cardiospecific genes and differ in expression of only 1.9% of present transcripts. Similarly, sarcomeric organization, electrophysiological properties and calcium handling of iPS-CMs were indistinguishable from those of ES-CMs. Gene ontology analysis revealed that among 204 genes that were upregulated in iPS-BCs vs ES-BCs the processes related to extracellular matrix, cell adhesion and tissue development were overrepresented. Interestingly, 47 of 106 genes that were upregulated in undifferentiated iPS vs ES cells remained enriched in iPS-BCs vs ES-BCs. Most of these genes were found to be highly expressed in fibroblasts used for reprogramming and 34% overlapped with the recently reported iPS cell-enriched genes.</p> <p>Conclusions</p> <p>These data suggest that iPS-BCs are transcriptionally highly similar to ES-BCs. However, iPS-BCs appear to share some somatic cell signature with undifferentiated iPS cells. Thus, iPS-BCs may not be perfectly identical to ES-BCs. These minor differences in the expression profiles may occur due to differential cellular composition of iPS-BCs and ES-BCs, due to retention of some genetic profile of somatic cells in differentiated iPS cell-derivatives, or both.</p

    Generation of human induced pluripotent stem cell line from a patient with a long QT syndrome type 2

    Get PDF
    We report here the generation of human iPS cell line UKKi009-A from dermal fibroblasts of a patient carrying heterozygous mutation c.3035-3045delTCCCTCGATGC, p.Leu1012Pro (fs*55) in KCNH2 gene leading to long QT syndrome type 2 (LQT2). We used the Sleeping Beauty transposon-based plasmids expressing OSKM along with microRNAs 307/367 to reprogram the fibroblasts. The iPS cells possess pluripotent stem cell characteristics and differentiate to cell lineages of all three germ layers. This cell line can serve as a source for in vitro modeling of LQT2. This cell line is distributed by the European Collection of Authenticated Cell Cultures (ECACC)

    Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations

    No full text
    Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) are promising candidates to treat myocardial infarction and other cardiac diseases. Such treatments require pure cardiomyocytes (CMs) in large quantities. Methods: In the present study we describe an improved protocol for production of hiPSC-CMs in which hiPSCs are first converted into mesodermal cells by stimulation of wingless (Wnt) signaling using CHIR99021, which are then further differentiated into CM progenitors by simultaneous inhibition of porcupine and tankyrase pathways using IWP2 and XAV939 under continuous supplementation of ascorbate during the entire differentiation procedure. Results: The protocol resulted in reproducible generation of >90% cardiac troponin T (TNNT2)-positive cells containing highly organized sarcomeres. In 2D monolayer cultures CM yields amounted to 0.5 million cells per cm2 growth area, and on average 72 million cells per 100 mL bioreactor suspension culture without continuous perfusion. The differentiation efficiency was hardly affected by the initial seeding density of undifferentiated hiPSCs. Furthermore, batch-to-batch variations were reduced by combinatorial use of ascorbate, IWP2, and XAV939. Conclusion: Combined inhibition of porcupine and tankyrase sub-pathways of Wnt signaling and continuous ascorbate supplementation, enable robust and efficient production of hiPSC-CMs

    The Disease-Specific Phenotype in Cardiomyocytes Derived from Induced Pluripotent Stem Cells of Two Long QT Syndrome Type 3 Patients

    Get PDF
    Long QT syndromes (LQTS) are heritable diseases characterized by prolongation of the QT interval on an electrocardiogram, which often leads to syncope and sudden cardiac death. Here we report the generation of induced pluripotent stems (iPS) cells from two patients with LQTS type 3 carrying a different point mutation in a sodium channel Na(v)1.5 (p.V240M and p.R535Q) and functional characterization of cardiomyocytes (CM) derived from them. The iPS cells exhibited all characteristic properties of pluripotent stem cells, maintained the disease-specific mutation and readily differentiated to CM. The duration of action potentials at 50% and 90% repolarization was longer in LQTS-3 CM as compared to control CM but this difference did not reach statistical significance due to high variations among cells. Sodium current recordings demonstrated longer time to peak and longer time to 90% of inactivation of the Na+ channel in the LQTS-3 CM. This hints at a defective Na+ channel caused by deficiency in open-state inactivation of the Na+ channel that is characteristic of LQTS-3. These analyses suggest that the effect of channel mutation in the diseased CM is demonstrated in vitro and that the iPS cell-derived CM can serve as a model system for studying the pathophysiology of LQTS-3, toxicity testing and design of novel therapeutics. However, further improvements in the model are still required to reduce cell-to-cell and cell line-to-cell line variability
    corecore