2 research outputs found

    Hyper high haemoglobin content in red blood cells and erythropoietic transitions postnatally in infants of 22 to 26 weeks' gestation: a prospective cohort study

    No full text
    Objective Blood cell populations, including red blood cells (RBC) unique to the extremely preterm (EPT) infant, are potentially lost due to frequent clinical blood sampling during neonatal intensive care. Currently, neonatal RBC population heterogeneity is not described by measurement of total haemoglobin or haematocrit. We therefore aimed to describe a subpopulation of large RBCs with hyper high haemoglobin content, >49 pg (Hyper-He) following EPT birth.Design Prospective observational cohort study.Setting Two Swedish study centres.Participants Infants (n=62) born between gestational weeks 22+0 to 26+6.Methods Prospective data (n=280) were collected from March 2020 to September 2022 as part of an ongoing randomised controlled trial. Blood was sampled from the umbilical cord, at postnatal day 1–14, 1 month, 40 weeks’ postmenstrual age and at 3 months’ corrected age.Results At birth, there was a considerable inter-individual variation; Hyper-He ranging from 1.5% to 24.9% (median 7.0%). An inverse association with birth weight and gestational age was observed; Spearman’s rho (CI) −0.38 (−0.63 to −0.07) and −0.39 (−0.65 to −0.05), respectively. Overall, Hyper-He rapidly decreased, only 0.6%–5.0% (median 2.2%) remaining 2 weeks postnatally. Adult levels (Conclusion Our results point to gestational age and birth weight-dependent properties of the RBC population. Future work needs to verify results by different measurement techniques and elucidate the potential role of differing properties between endogenous and transfused RBCs in relation to neonatal morbidities during this important time frame of child development.Trial registration number NCT04239690

    Interventions to minimize blood loss in very preterm infants-A systematic review and meta-analysis.

    No full text
    Blood loss in the first days of life has been associated with increased morbidity and mortality in very preterm infants. In this systematic review we included randomized controlled trials comparing the effects of interventions to preserve blood volume in the infant from birth, reduce the need for sampling, or limit the blood sampled. Mortality and major neurodevelopmental disabilities were the primary outcomes. Included studies underwent risk of bias-assessment and data extraction by two review authors independently. We used risk ratio or mean difference to evaluate the treatment effect and meta-analysis for pooled results. The certainty of evidence was assessed using GRADE. We included 31 trials enrolling 3,759 infants. Twenty-five trials were pooled in the comparison delayed cord clamping or cord milking vs. immediate cord clamping or no milking. Increasing placental transfusion resulted in lower mortality during the neonatal period (RR 0.51, 95% CI 0.26 to 1.00; participants = 595; trials = 5; I2 = 0%, moderate certainty of evidence) and during first hospitalization (RR 0.70, 95% CI 0.51, 0.96; 10 RCTs, participants = 2,476, low certainty of evidence). The certainty of evidence was very low for the other primary outcomes of this review. The six remaining trials compared devices to monitor glucose levels (three trials), blood sampling from the umbilical cord or from the placenta vs. blood sampling from the infant (2 trials), and devices to reintroduce the blood after analysis vs. conventional blood sampling (1 trial); the certainty of evidence was rated as very low for all outcomes in these comparisons. Increasing placental transfusion at birth may reduce mortality in very preterm infants; However, extremely limited evidence is available to assess the effects of other interventions to reduce blood loss after birth. In future trials, infants could be randomized following placental transfusion to different blood saving approaches. Trial registration: PROSPERO CRD42020159882
    corecore