244 research outputs found

    On the Performance of the Relay-ARQ Networks

    Full text link
    This paper investigates the performance of relay networks in the presence of hybrid automatic repeat request (ARQ) feedback and adaptive power allocation. The throughput and the outage probability of different hybrid ARQ protocols are studied for independent and spatially-correlated fading channels. The results are obtained for the cases where there is a sum power constraint on the source and the relay or when each of the source and the relay are power-limited individually. With adaptive power allocation, the results demonstrate the efficiency of relay-ARQ techniques in different conditions.Comment: Accepted for publication in IEEE Trans. Veh. Technol. 201

    Soft metrics and their Performance Analysis for Optimal Data Detection in the Presence of Strong Oscillator Phase Noise

    Get PDF
    In this paper, we address the classical problem of maximum-likelihood (ML) detection of data in the presence of random phase noise. We consider a system, where the random phase noise affecting the received signal is first compensated by a tracker/estimator. Then the phase error and its statistics are used for deriving the ML detector. Specifically, we derive an ML detector based on a Gaussian assumption for the phase error probability density function (PDF). Further without making any assumptions on the phase error PDF, we show that the actual ML detector can be reformulated as a weighted sum of central moments of the phase error PDF. We present a simple approximation of this new ML rule assuming that the phase error distribution is unknown. The ML detectors derived are also the aposteriori probabilities of the transmitted symbols, and are referred to as soft metrics. Then, using the detector developed based on Gaussian phase error assumption, we derive the symbol error probability (SEP) performance and error floor analytically for arbitrary constellations. Finally we compare SEP performance of the various detectors/metrics in this work and those from literature for different signal constellations, phase noise scenarios and SNR values

    On the Required Number of Antennas in a Point-to-Point Large-but-Finite MIMO System: Outage-Limited Scenario

    Full text link
    This paper investigates the performance of the point-to-point multiple-input-multiple-output (MIMO) systems in the presence of a large but finite numbers of antennas at the transmitters and/or receivers. Considering the cases with and without hybrid automatic repeat request (HARQ) feedback, we determine the minimum numbers of the transmit/receive antennas which are required to satisfy different outage probability constraints. Our results are obtained for different fading conditions and the effect of the power amplifiers efficiency on the performance of the MIMO-HARQ systems is analyzed. Moreover, we derive closed-form expressions for the asymptotic performance of the MIMO-HARQ systems when the number of antennas increases. Our analytical and numerical results show that different outage requirements can be satisfied with relatively few transmit/receive antennas.Comment: Under review in IEEE Transactions on Communication

    Spectrum sharing via HARQ feedback and adaptive power allocation

    Get PDF
    Recently, substantial attention has been paid to improve the spectral efficiency of communication setups using different spectrum sharing techniques. This paper studies the throughput of spectrum sharing channels utilizing hybrid automatic repeat request (HARQ) protocols. Considering different HARQ schemes, the unlicensed user throughput is obtained under an outage probability constraint for the licensed user. The outage-limited throughput is obtained for both independent and spatially-correlated fading conditions, where there is spatial dependency between the fading coefficients. The results show that, using HARQ and adaptive power allocation, the maximum throughput is achieved by combination of simultaneous transmission and interference-avoiding spectrum sharing paradigms. The performance of the spectrum sharing networks is not sensitive to spatial correlation, within the practical range, and the throughput changes are negligible at low/moderate correlations. Finally, there is considerable potential for data transmission of the unlicensed user with limited performance degradation of the licensed user

    On an HARQ-based Coordinated Multi-point Network using Dynamic Point Selection

    Get PDF
    This paper investigates the performance of coordinated multi-point (CoMP) networks in the presence of hybrid automatic repeat request (HARQ) feedback. With an information theoretic point of view, the throughput and the outage probability of different HARQ protocols are studied for slow-fading channels. The results are compared with the ones obtained in the presence of repetition codes and basic HARQ, or when there is no channel state information available at the base stations. The analytical and numerical results demonstrate the efficiency of the CoMP-HARQ techniques in different conditions

    Optimal and Approximate Methods for Detection of Uncoded Data with Carrier Phase Noise

    Get PDF
    Previous results in the literature have shown that derivation of the optimum \textit{maximum-likelihood} (ML) receiver for \textit{symbol-by-symbol} (SBS) detection of an uncoded data sequence in the presence of \textit{random phase noise} is an intractable problem, since it involves the computation of the conditional \textit{probability distribution function} (PDF) of the phase noise process. In this paper, we seek to minimize \textit{symbol error probability} (SEP), which is achieved by SBS detection of the sequence based on all received signals. We show that the ML detector for this problem can be formulated as a weighted sum of central moments of the conditional PDF of phase noise. Given that the central moments of the conditional PDF of phase noise can be estimated, this new optimal structure is tractable with respect to the previously known optimal ML receiver. Furthermore, based on the new receiver structure, we propose a simple approximate method for SBS detection and investigate its scope and applicability. Simulation results demonstrate that SEP performance close to optimality can be obtained through the proposed method for scenarios of low phase noise variance and low \textit{signal-to-noise ratio} (SNR)

    Throughput Analysis for Multi-Point Joint Transmission with Quantized CSI Feedback

    Get PDF
    This paper addresses the problem of limited CSI feedback in coordinated multi-point (CoMP) networks. Specifically, the system throughput is obtained for block-fading CoMP channels with quantized CSI feedback, and the effect of feedback bit allocation on the system throughput is investigated for different user locations and fading distributions. The analytical and simulation results show that substantial throughput increment is achieved via CoMP joint transmission with very limited number of feedback bits per base station. The effect of optimal bit allocation becomes more important for the user that is located in the CoMP cluster edge areas. Also, the standard Zonal-sampling scheme provides the best bit allocation strategy in many cases, maximizing the system throughput

    Power Allocation for Multi-Point Joint Transmission with Different Node Activeness

    Get PDF
    We study the power allocation problem for the downlink of a cooperative system with different node activeness, i.e., each receiving node requests for data transmission according to a certain probability. Data symbols of the active nodes are jointly transmitted from cooperative transmission points using zero-forcing precoding. The problem is cast in form of maximizing the ergodic achievable rate subject to per-transmit-point average total power constraints. The derived power allocation indicates that depending on the channel conditions and receiving nodes' activation probability, the optimal solution takes the form of either greedy power allocation or power sharing allocation
    • …
    corecore