23 research outputs found

    Multiple components of environmental change drive populations of breeding waders in seminatural grasslands

    Get PDF
    Environments are rapidly changing due to climate change, land use, intensive agriculture, and the impact of hunting on predator populations. Here, we analyzed longterm data recorded during 1928–2014 on the size of breeding populations of waders at two large nature reserves in Denmark, Vejlerne and Tipperne, to determine the effects of components of environmental change on breeding populations of waders. Environmental variables and counts of waders were temporally autocorrelated, and we used generalized least square (GLS) by incorporating the first-order autoregressive correlation structure in the analyses. We attempted to predict the abundance of waders for short-term trends for two nature reserves (35 years) and for long-term trends for one nature reserve (86 years), using precipitation, temperature, nutrients, abundance of foxes Vulpes vulpes, area grazed, and number of cattle. There was evidence of impacts of nutrients, climate (long-term changes in temperature and precipitation), grazing, mowing, and predation on bird populations. We used standard random effects meta-analyses weighted by (N–3) to quantify these mean effects. There was no significant difference in effect size among species, while mean effect size differed consistently among environmental factors, and the interaction between effect size for species and environmental factors was also significant. Thus, environmental factors affected the different species differently. Mean effect size was the largest at +0.20 for rain, +0.11 for temperature, −0.09 for fox abundance, and −0.03 for number of cattle, while there was no significant mean effect for fertilizer, area grazed, and year. Effect sizes for two short-term time series from Tipperne and Vejlerne were positively correlated as were effect sizes for short-term and long-term time series at Tipperne. This implies that environmental factors had consistent effects across large temporal and spatial scales

    Long-term patterns in European brown hare population dynamics in Denmark: effects of agriculture, predation and climate

    Get PDF
    BACKGROUND: In Denmark and many other European countries, harvest records suggest a marked decline in European brown hare numbers, a decline often attributed to the agricultural practice. In the present study, we analyse the association between agricultural land-use, predator abundance and winter severity on the number of European brown hares harvested in Denmark in the years 1955 through 2000. RESULTS: Winter cereals had a significant negative association with European brown hare numbers. In contrast to this, root crop area was positively related to their numbers. Remaining crop categories were not significantly associated with the European brown hare numbers, though grass out of rotation tended to be positively related. The areas of root crop production and of grass out of rotation have been reduced by approximately 80% and 50%, respectively, while the area of winter cereals has increased markedly (>70%). However, European brown hare numbers were primarily negatively associated with the number of red fox. Finally, we also found a positive association between mild winters and European brown hare numbers. CONCLUSION: The decline of Danish European brown hare populations can mainly be attributed to predation by red fox, but the development in agricultural land-use during the last 45 years have also affected the European brown hare numbers negatively. Additionally, though mild winters were beneficial to European brown hares, the increasing frequency of mild winters during the study period was insufficient to reverse the negative population trend

    Polarisation of Major Histocompatibility Complex II Host Genotype with Pathogenesis of European Brown Hare Syndrome Virus.

    Get PDF
    A study was conducted in order to determine the occurrence of European Brown Hare Syndrome virus (EBHSV) in Denmark and possible relation between disease pathogenesis and Major Histocompatibility Complex (MHC) host genotype. Liver samples were examined from 170 brown hares (hunted, found sick or dead), collected between 2004 and 2009. Macroscopical and histopathological findings consistent with EBHS were detected in 24 (14.1%) hares; 35 (20.6%) had liver lesions not typical of the syndrome, 50 (29.4%) had lesions in other tissues and 61 (35.9%) had no lesions. Sixty five (38.2%) of 170 samples were found to be EBHSV-positive (RT-PCR, VP60 gene). In order to investigate associations between viral pathogenesis and host genotype, variation within the exon 2 DQA gene of MHC was assessed. DQA exon 2 analysis revealed the occurrence of seven different alleles in Denmark. Consistent with other populations examined so far in Europe, observed heterozygosity of DQA (H o = 0.1180) was lower than expected (H e = 0.5835). The overall variation for both nucleotide and amino acid differences (2.9% and 14.9%, respectively) were lower in Denmark than those assessed in other European countries (8.3% and 16.9%, respectively). Within the peptide binding region codons the number of nonsynonymous substitutions (dN) was much higher than synonymous substitutions (dS), which would be expected for MHC alleles under balancing selection. Allele frequencies did not significantly differ between EBHSV-positive and -negative hares. However, allele Leeu-DQA*30 was detected in significantly higher (P = 0.000006) frequency among the positive hares found dead with severe histopathological lesions than among those found sick or apparently healthy. In contrast, the latter group was characterized by a higher frequency of the allele Leeu-DQA*14 as well as the proportion of heterozygous individuals (P = 0.000006 and P = 0.027). These data reveal a polarisation between EBHSV pathogenesis and MHC class II genotype within the European brown hare in Denmark

    Udviklingstendenser for skovens pattedyr

    No full text

    Pattedyr

    No full text
    corecore