21 research outputs found

    Least Conservative Linearized Constraint Formulation for Real-Time Motion Generation

    Get PDF
    Today robotics has shown many successful strategies to solve several navigation problems. However, moving into a dynamic environment is still a challenging task. This paper presents a novel method for motion generation in dynamic environments based on real-time nonlinear model predictive control (NMPC). At the core of our approach is a least conservative linearized constraint formulation built upon the real-time iteration (RTI) scheme with Gauss- Newton Hessian approximation. We demonstrate that the proposed constraint formulation is less conservative for planners based on Newton-type method than for those based on a fully converged NMPC method. Additionally, we show the performance of our approach in simulation, in a scenario where the Crazyflie nanoquadcopter avoids balls and reaches its desired goal in spite of the uncertainty about when the balls will be thrown. The numerical results validate our theoretical findings and illustrate the computational efficiency of the proposed scheme

    The STRIP instrument of the Large Scale Polarization Explorer: microwave eyes to map the Galactic polarized foregrounds

    Get PDF
    In this paper we discuss the latest developments of the STRIP instrument of the "Large Scale Polarization Explorer" (LSPE) experiment. LSPE is a novel project that combines ground-based (STRIP) and balloon-borne (SWIPE) polarization measurements of the microwave sky on large angular scales to attempt a detection of the "B-modes" of the Cosmic Microwave Background polarization. STRIP will observe approximately 25% of the Northern sky from the "Observatorio del Teide" in Tenerife, using an array of forty-nine coherent polarimeters at 43 GHz, coupled to a 1.5 m fully rotating crossed-Dragone telescope. A second frequency channel with six-elements at 95 GHz will be exploited as an atmospheric monitor. At present, most of the hardware of the STRIP instrument has been developed and tested at sub-system level. System-level characterization, starting in July 2018, will lead STRIP to be shipped and installed at the observation site within the end of the year. The on-site verification and calibration of the whole instrument will prepare STRIP for a 2-years campaign for the observation of the CMB polarization.Comment: 17 pages, 15 figures, proceedings of the SPIE Astronomical Telescopes + Instrumentation conference "Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX", on June 15th, 2018, Austin (TX

    Model Predictive Control for Non-Prehensile Manipulation

    No full text
    The goal of this work is to evaluate the performances of online numerical optimal control techniques for robotic control applications, specifically for nonprehensile manipulation tasks. Nonprehensile manipulation is the process of manipulating a part without a form- or force-closure grasp. Without such a grasp, the part is free to roll, slide, or break contact with the robot(s) manipulating it. Among the realm of nonprehensile manipulation this work focus on fully dynamical task which include impulsive contact and ballistic phase. First the main difficulties and issues to overcome are listed. Then available solutions both in literature both biological system like the human motion control system are analyzed and imitated. Finally some implementation are tested in benchmark cases with descending complexity. Some considerations are expressed regarding the approach to this kind of under-actuated hybrid problems in a systematic way. Open loop optimization have been tested on a 2D non-prehensile system composed by a capsule and a plane. Closed loop online techniques have been successfully applied in simulation to a simplified 2D case, composed by a paddle and a ball. For an even simpler case, 1D ball bouncing system, an experimental apparatus have been designed and build and online optimization algorithm has been tested in real world

    An Efficient Real-Time NMPC for Quadrotor Position Control under Communication Time-Delay

    No full text
    The advances in computer processor technology have enabled the application of nonlinear model predictive control (NMPC) to agile systems, such as quadrotors. These sys- tems are characterized by their underactuation, nonlinearities, bounded inputs, and time-delays. Classical control solutions fall short in overcoming these difficulties and fully exploiting the capabilities offered by such platforms. This paper presents the design and implementation of an efficient position controller for quadrotors based on real-time NMPC with time-delay compensation and bounds enforcement on the actuators. To deal with the limited computational resources onboard, an offboard control architecture is proposed. It is implemented using the high-performance software package acados, which solves optimal control problems and implements a real-time iteration (RTI) variant of a sequential quadratic programming (SQP) scheme with Gauss-Newton Hessian approximation. The quadratic subproblems (QP) in the SQP scheme are solved with HPIPM, an interior-point method solver, built on top of the linear algebra library BLASFEO, finely tuned for multiple CPU architectures. Solution times are further reduced by reformu- lating the QPs using the efficient partial condensing algorithm implemented in HPIPM. We demonstrate the capabilities of our architecture using the Crazyflie 2.1 nano-quadrotor

    Ask the shark. Blackmouth catshark (Galeus melastomus) as a sentinel of plastic waste on the seabed

    No full text
    The presence of plastic waste in the marine environment has driven the scientific community to make significant efforts to study and mitigate its possible effects. One of the critical aspects is to determine if and how an increase in ingestion events may occur as a result of the accumulation of plastic waste on the seabed. In this study, G. melastomus is examined for its ability to indirectly provide information on the amount of macroplastics accumulating on the seafloor. Plastic ingestion is explored by describing the feeding habits of the species, which have the potential to provide very useful information regarding biological or ecological issues. The diet of G. melastomus mainly consisted of cephalopods, bathypelagic fishes, and decapod crustaceans, increasing in diversity during growth. The generalist-opportunistic feeding behaviour of this species leads to the incidental ingestion of plastic particles (N = 47, with a mean (+/- SD) of 1.47 +/- 0.28 per specimen) which can be indirectly associated to the presence of macroplastics on the seafloor. Indeed, our results indicate a significant relationship between the amount of macroplastics present on the seabed and the frequency of ingestion of plastic particles by blackmouth catshark. We propose G. melastomus as an excellent candidate for developing a valid monitoring strategy for the presence of plastics on the seabed, as requested by the EU Marine Strategy Framework Directive

    Proteogenomic Workflow Reveals Molecular Phenotypes Related to Breast Cancer Mammographic Appearance

    No full text
    Proteogenomic approaches have enabled the generat̲ion of novel information levels when compared to single omics studies although burdened by extensive experimental efforts. Here, we improved a data-independent acquisition mass spectrometry proteogenomic workflow to reveal distinct molecular features related to mammographic appearances in breast cancer. Our results reveal splicing processes detectable at the protein level and highlight quantitation and pathway complementarity between RNA and protein data. Furthermore, we confirm previously detected enrichments of molecular pathways associated with estrogen receptor-dependent activity and provide novel evidence of epithelial-to-mesenchymal activity in mammography-detected spiculated tumors. Several transcript-protein pairs displayed radically different abundances depending on the overall clinical properties of the tumor. These results demonstrate that there are differentially regulated protein networks in clinically relevant tumor subgroups, which in turn alter both cancer biology and the abundance of biomarker candidates and drug targets
    corecore