723 research outputs found

    Half-life and spin of 60Mn^g

    Get PDF
    A value of 0.28 +/- 0.02 s has been deduced for the half-life of the ground state of 60Mn, in sharp contrast to the previously adopted value of 51 +/- 6 s. Access to the low-spin 60Mn ground state was accomplished via beta decay of the 0+ 60Cr parent nuclide. New, low-energy states in 60Mn have been identified from beta-delayed gamma-ray spectroscopy. The new, shorter half-life of 60Mn^g is not suggestive of isospin forbidden beta decay, and new spin and parity assignments of 1+ and 4+ have been adopted for the ground and isomeric beta-decaying states, respectively, of 60Mn.Comment: 13 pages, 5 figures, Accepted for publication in Phys. Rev.

    Probing shell structure and shape changes in neutron-rich sulfur isotopes through transient-field g factor measurements on fast radioactive beams of 38S and 40S

    Full text link
    The shell structure underlying shape changes in neutron-rich nuclei near N=28 has been investigated by a novel application of the transient field technique to measure the first-excited state g factors in 38S and 40S produced as fast radioactive beams. There is a fine balance between proton and neutron contributions to the magnetic moments in both nuclei. The g factor of deformed 40S does not resemble that of a conventional collective nucleus because spin contributions are more important than usual.Comment: 10 pages, 6 figures, accepted in PR

    An evaluation of the epidemiology of medication discrepancies and clinical significance of medicines reconciliation in children admitted to hospital.

    Get PDF
    To determine the incidence of unintended medication discrepancies in paediatric patients at the time of hospital admission; evaluate the process of medicines reconciliation; assess the benefit of medicines reconciliation in preventing clinical harm

    Shell structure underlying the evolution of quadrupole collectivity in S-38 and S-40 probed by transient-field g-factor measurements on fast radioactive beams

    Get PDF
    The shell structure underlying shape changes in neutron-rich nuclei between N=20 and N=28 has been investigated by a novel application of the transient field technique to measure the first-excited state g factors in S-38 and S-40 produced as fast radioactive beams. Details of the new methodology are presented. In both S-38 and S-40 there is a fine balance between the proton and neutron contributions to the magnetic moments. Shell model calculations which describe the level schemes and quadrupole properties of these nuclei also give a satisfactory explanation of the g factors. In S-38 the g factor is extremely sensitive to the occupation of the neutron p3/2 orbit above the N=28 shell gap as occupation of this orbit strongly affects the proton configuration. The g factor of deformed S-40 does not resemble that of a conventional collective nucleus because spin contributions are more important than usual.Comment: 10 pages, 36 figures, accepted for publication in Physical Review

    Unscrambling butterfly oogenesis

    Get PDF
    Background Butterflies are popular model organisms to study physiological mechanisms underlying variability in oogenesis and egg provisioning in response to environmental conditions. Nothing is known, however, about; the developmental mechanisms governing butterfly oogenesis, how polarity in the oocyte is established, or which particular maternal effect genes regulate early embryogenesis. To gain insights into these developmental mechanisms and to identify the conserved and divergent aspects of butterfly oogenesis, we analysed a de novo ovarian transcriptome of the Speckled Wood butterfly Pararge aegeria (L.), and compared the results with known model organisms such as Drosophila melanogaster and Bombyx mori. Results A total of 17306 contigs were annotated, with 30% possibly novel or highly divergent sequences observed. Pararge aegeria females expressed 74.5% of the genes that are known to be essential for D. melanogaster oogenesis. We discuss the genes involved in all aspects of oogenesis, including vitellogenesis and choriogenesis, plus those implicated in hormonal control of oogenesis and transgenerational hormonal effects in great detail. Compared to other insects, a number of significant differences were observed in; the genes involved in stem cell maintenance and differentiation in the germarium, establishment of oocyte polarity, and in several aspects of maternal regulation of zygotic development. Conclusions This study provides valuable resources to investigate a number of divergent aspects of butterfly oogenesis requiring further research. In order to fully unscramble butterfly oogenesis, we also now also have the resources to investigate expression patterns of oogenesis genes under a range of environmental conditions, and to establish their functio

    A new Late Pliocene large provannid gastropod associated with hydrothermal venting at Kane Megamullion, Mid-Atlantic Ridge

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Taylor & Francis for personal use, not for redistribution. The definitive version was published in Journal of Systematic Palaeontology 10 (2012): 423-433, doi:10.1080/14772019.2011.607193.A new gastropod, Kaneconcha knorri gen et sp. nov., was found in marlstone dredged from the surface of Adam Dome at Kane Megamullion on the flank of the Mid-Atlantic Ridge in an area of former hydrothermal activity. The snail is interpreted as a large provannid similar to the chemosymbiotic genera Ifremeria and Alviniconcha. This is the first record of presumably chemosymbiotic provannids from the Atlantic Ocean and also the first fossil record of such large provannids associated with hydrothermal venting. Extant Alviniconcha and Ifremeria are endemic to hydrothermal vents in the Pacific and Indian oceans. Kaneconcha differs from Ifremeria in having no umbilicus and a posterior notch, and it differs from Alviniconcha in having the profile of the whorl slightly flattened and having no callus on the inner lip. A dark layer covering the Kaneconcha shell is interpreted here as a fossilized periostracum. The shell/periostracum interface shows fungal traces attributed to the ichnospecies Saccomorpha clava. We hypothesize that large chemosymbiotic provannids (i.e., Kaneconcha, Ifremeria, and Alviniconcha) form a clade that possibly diverged from remaining provannids in the Late Jurassic, with the Late Jurassic/Early Cretaceous Paskentana being an early member.R/V Knorr Cruise 180- 2 to Kane Megamullion was supported by National Science Foundation grant OCE- 0118445. A. Kaim acknowledges support from the Alexander von Humboldt Foundation. B. Tucholke acknowledges support from an Andrew W. Mellon Foundation Award for Innovative Research and from the Deep Ocean Exploration Institute at Woods Hole Oceanographic Institution

    Spherically symmetric Einstein-Maxwell theory and loop quantum gravity corrections

    Full text link
    Effects of inverse triad corrections and (point) holonomy corrections, occuring in loop quantum gravity, are considered on the properties of Reissner-Nordstr\"om black holes. The version of inverse triad corrections with unmodified constraint algebra reveals the possibility of occurrence of three horizons (over a finite range of mass) and also shows a mass threshold beyond which the inner horizon disappears. For the version with modified constraint algebra, coordinate transformations are no longer a good symmetry. The covariance property of spacetime is regained by using a \emph{quantum} notion of mapping from phase space to spacetime. The resulting quantum effects in both versions of these corrections can be associated with renormalization of either mass, charge or wave function. In neither of the versions, Newton's constant is renormalized. (Point) Holonomy corrections are shown to preclude the undeformed version of constraint algebra as also a static solution, though time-independent solutions exist. A possible reason for difficulty in constructing a covariant metric for these corrections is highlighted. Furthermore, the deformed algebra with holonomy corrections is shown to imply signature change.Comment: 38 pages, 9 figures, matches published versio

    Infant mental health home visiting therapists- reflective supervision self- efficacy in community practice settings

    Full text link
    In recent years, there has been an increase in the research on reflective supervision, including the development of tools designed to measure reflective practice in the context of reflective supervision. The Reflective Supervision Self- Efficacy Scale for Supervisees (RSSESS) is a self- report measure that has been used in previous evaluations and is designed to assess perceived reflective practice self- efficacy for Infant Mental Health- Home Visiting (IMH- HV) therapists. Properties of the RSSESS including factor structure and reliability are explored in a first study that lays the foundation for the use of the RSSESS in an IMH- HV evaluation in the State of Michigan. IMH- HV therapists completed the RSSESS at 4 time points over a 12- month period and also completed a Clinician Profile Form that included questions about their IMH background and their work experience, including job satisfaction and burnout. Results indicated that the RSSESS is a reliable tool to measure change in reflective practice skills. IMH- HV therapists demonstrated growth in their use of reflective practice skills with families and their observational skills over the 12- month period. In addition, results indicated correlations between reflective supervision self- efficacy and job satisfaction as well as burnout.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154909/1/imhj21834.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154909/2/imhj21834_am.pd
    corecore