48 research outputs found

    Testing the Cavefish Model: An Organism-focused Theory of Biological Design

    Get PDF
    Poster Abstract The Institute for Creation Research (ICR) is experimentally testing an engineering-based model of rapid biological adaptation: Continuous Environmental Tracking (CET). This model infers that organisms actively track conditions within specific environments to self-adjust through internal mechanisms and initiate adaptive functionality. The animal under investigation is Astyanax mexicanus (Mexican tetra), a freshwater fish with well-differentiated, interfertile morphotypes: eyed surface-dwelling fish (surface fish) with distinct pigmentation patterns, and eyeless cave-dwelling fish (cavefish) with minimal pigmentation. Aquaria within our newly established laboratory contain breeding pairs of cavefish exposed to either (A) cyclical light/dark patterns of full-spectrum high-intensity light, (B) minimal light combined with high CO2(low pH) levels or (C) deionized water. Preliminary results show that (1) cavefish rapidly increase pigmentation when exposed to high-intensity light, and (2) do not exhibit injurious behavior or physiology in low pH water; (3) surface fish lose pigmentation across their body in low pH or deionized water conditions; (4) adult cavefish and surface fish respond rapidly within weeks-to-months of experimental treatments. Thus far, preliminary results imply that high-intensity light may stimulate the induction of latent melanin synthesis pathways in adult cavefish. Second, pre-acclimation of cavefish to acidic water chemistry likely reflects conditions within their native cave environments. Third, comparative loss of pigmentation in adult surface fish exposed to darkness and low pH or deionized water suggests they actively self-adjust, and that adaptive traits are reversable. Fourth, in contrast to cavefish, surface fish indicate non-acclimation to a simulated cave environment. Lastly, all responses by A. mexicanus to experimental treatments occur without undergoing multigenerational cycles of death and survival. These implications do not support the conventional view that beneficial adaptations arise through random mutation, unregulated genomic recombination, or accumulation of unguided genetic variation – regardless of time scales. Therefore, organisms are the agents in control of adaptations and diversification. If correct, hypotheses attributing the exquisite fit of organisms to environments through the agency of nature are mistaken. We present a new direction in experimental science for the ICR, and Creation Science, that sees every organism as a divinely engineered creation with adaptive capacity across multiple environmental conditions

    Straw blood cell count, growth, inhibition and comparison to apoptotic bodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mammalian cells transform into individual tubular straw cells naturally in tissues and in response to desiccation related stress <it>in vitro</it>. The transformation event is characterized by a dramatic cellular deformation process which includes: condensation of certain cellular materials into a much smaller tubular structure, synthesis of a tubular wall and growth of filamentous extensions. This study continues the characterization of straw cells in blood, as well as the mechanisms of tubular transformation in response to stress; with specific emphasis placed on investigating whether tubular transformation shares the same signaling pathway as apoptosis.</p> <p>Results</p> <p>There are approximately 100 billion, unconventional, tubular straw cells in human blood at any given time. The straw blood cell count (SBC) is 45 million/ml, which accounts for 6.9% of the bloods dry weight. Straw cells originating from the lungs, liver and lymphocytes have varying nodules, hairiness and dimensions. Lipid profiling reveals severe disruption of the plasma membrane in CACO cells during transformation. The growth rates for the elongation of filaments and enlargement of rabbit straw cells is 0.6~1.1 (ÎŒm/hr) and 3.8 (ÎŒm<sup>3</sup>/hr), respectively. Studies using apoptosis inhibitors and a tubular transformation inhibitor in CACO2 cells and in mice suggested apoptosis produced apoptotic bodies are mediated differently than tubular transformation produced straw cells. A single dose of 0.01 mg/kg/day of p38 MAPK inhibitor in wild type mice results in a 30% reduction in the SBC. In 9 domestic animals SBC appears to correlate inversely with an animal's average lifespan (R<sup>2 </sup>= 0.7).</p> <p>Conclusion</p> <p>Straw cells are observed residing in the mammalian blood with large quantities. Production of SBC appears to be constant for a given animal and may involve a stress-inducible protein kinase (P38 MAPK). Tubular transformation is a programmed cell survival process that diverges from apoptosis. SBCs may be an important indicator of intrinsic aging-related stress.</p

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Combinatorial Genomic Data Refute the Human Chromosome 2 Evolutionary Fusion and Build a Model of Functional Design for Interstitial Telomeric Repeats

    Get PDF
    Evolutionists allege that human chromosome 2 is the product of an ancient fusion event in an ancient hominid ancestor descended from apes. However, both the alleged site of fusion and the so-called cryptic centromere of human chromosome 2 are situated inside active genes negating the idea of fusion. Not only are the alleged genomic fossils of fusion representative of functional intragenic sequence, but they are also both highly degenerate versions of their supposed evolutionary beginnings, suggesting something other than an evolutionary origin. Given that these data strongly refute an evolutionary fusion scenario, it behooves creationists to propose an alternative model for the functional nature of telomere-like sequences scattered around the internal regions of human chromosomes. Towards this end, new data based on ENOCODE project data sets is provided that further elucidates the regulatory role of interstitial telomeric repeat sequences genome-wide, particularly with respect to their transcription factor binding domain properties and transcription start site associations
    corecore