121 research outputs found
Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton
According to the CPT theorem, which states that the combined operation of
charge conjugation, parity transformation and time reversal must be conserved,
particles and their antiparticles should have the same mass and lifetime but
opposite charge and magnetic moment. Here, we test CPT symmetry in a nucleus
containing a strange quark, more specifically in the hypertriton. This
hypernucleus is the lightest one yet discovered and consists of a proton, a
neutron, and a hyperon. With data recorded by the STAR
detector{\cite{TPC,HFT,TOF}} at the Relativistic Heavy Ion Collider, we measure
the hyperon binding energy for the hypertriton, and
find that it differs from the widely used value{\cite{B_1973}} and from
predictions{\cite{2019_weak, 1995_weak, 2002_weak, 2014_weak}}, where the
hypertriton is treated as a weakly bound system. Our results place stringent
constraints on the hyperon-nucleon interaction{\cite{Hammer2002,
STAR-antiH3L}}, and have implications for understanding neutron star interiors,
where strange matter may be present{\cite{Chatterjee2016}}. A precise
comparison of the masses of the hypertriton and the antihypertriton allows us
to test CPT symmetry in a nucleus with strangeness for the first time, and we
observe no deviation from the expected exact symmetry
Hyperon polarization along the beam direction relative to the second and third harmonic event planes in isobar collisions at = 200 GeV
The polarization of and hyperons along the beam
direction has been measured relative to the second and third harmonic event
planes in isobar Ru+Ru and Zr+Zr collisions at = 200 GeV. This
is the first experimental evidence of the hyperon polarization by the
triangular flow originating from the initial density fluctuations. The
amplitudes of the sine modulation for the second and third harmonic results are
comparable in magnitude, increase from central to peripheral collisions, and
show a mild dependence. The azimuthal angle dependence of the
polarization follows the vorticity pattern expected due to elliptic and
triangular anisotropic flow, and qualitatively disagree with most hydrodynamic
model calculations based on thermal vorticity and shear induced contributions.
The model results based on one of existing implementations of the shear
contribution lead to a correct azimuthal angle dependence, but predict
centrality and dependence that still disagree with experimental
measurements. Thus, our results provide stringent constraints on the thermal
vorticity and shear-induced contributions to hyperon polarization. Comparison
to previous measurements at RHIC and the LHC for the second-order harmonic
results shows little dependence on the collision system size and collision
energy.Comment: 6 pages, 5 figures, Published in Physical Review Letter
- …