916 research outputs found

    Charged Rotating Kaluza-Klein Black Holes Generated by G2(2) Transformation

    Full text link
    Applying the G_{2(2)} generating technique for minimal D=5 supergravity to the Rasheed black hole solution, we present a new rotating charged Kaluza-Klein black hole solution to the five-dimensional Einstein-Maxwell-Chern-Simons equations. At infinity, our solution behaves as a four-dimensional flat spacetime with a compact extra dimension and hence describes a Kaluza-Klein black hole. In particlar, the extreme solution is non-supersymmetric, which is contrast to a static case. Our solution has the limits to the asymptotically flat charged rotating black hole solution and a new charged rotating black string solution.Comment: 24 page

    Topology Change of Coalescing Black Holes on Eguchi-Hanson Space

    Get PDF
    We construct multi-black hole solutions in the five-dimensional Einstein-Maxwell theory with a positive cosmological constant on the Eguchi-Hanson space, which is an asymptotically locally Euclidean space. The solutions describe the physical process such that two black holes with the topology of S^3 coalesce into a single black hole with the topology of the lens space L(2;1)=S^3/Z_2. We discuss how the area of the single black hole after the coalescence depends on the topology of the horizon.Comment: 10 pages, Some comments are added. to be published as a letter in Classical and Quantum Gravit

    Wiretapping a hidden network

    Full text link
    We consider the problem of maximizing the probability of hitting a strategically chosen hidden virtual network by placing a wiretap on a single link of a communication network. This can be seen as a two-player win-lose (zero-sum) game that we call the wiretap game. The value of this game is the greatest probability that the wiretapper can secure for hitting the virtual network. The value is shown to equal the reciprocal of the strength of the underlying graph. We efficiently compute a unique partition of the edges of the graph, called the prime-partition, and find the set of pure strategies of the hider that are best responses against every maxmin strategy of the wiretapper. Using these special pure strategies of the hider, which we call omni-connected-spanning-subgraphs, we define a partial order on the elements of the prime-partition. From the partial order, we obtain a linear number of simple two-variable inequalities that define the maxmin-polytope, and a characterization of its extreme points. Our definition of the partial order allows us to find all equilibrium strategies of the wiretapper that minimize the number of pure best responses of the hider. Among these strategies, we efficiently compute the unique strategy that maximizes the least punishment that the hider incurs for playing a pure strategy that is not a best response. Finally, we show that this unique strategy is the nucleolus of the recently studied simple cooperative spanning connectivity game

    Kaluza-Klein Multi-Black Holes in Five-Dimensional Einstein-Maxwell Theory

    Get PDF
    We construct the Kaluza-Klein multi-black hole solutions on the Gibbons-Hawking multi-instanton space in the five-dimensional Einstein-Maxwell theory. We study geometric properties of the multi-black hole solutions. In particular, unlike the Gibbons-Hawking multi-instanton solutions, each nut-charge is able to take a different value due to the existence of black hole on it. The spatial cross section of each horizon can be admitted to have the topology of a different lens space L(n;1)=S^3/Z_n addition to S^3.Comment: 8 pages, to be published in Classical and Quantum Gravit

    Spin diffusion/transport in nn-type GaAs quantum wells

    Full text link
    The spin diffusion/transport in nn-type (001) GaAs quantum well at high temperatures (120\ge120 K) is studied by setting up and numerically solving the kinetic spin Bloch equations together with the Poisson equation self-consistently. All the scattering, especially the electron-electron Coulomb scattering, is explicitly included and solved in the theory. This enables us to study the system far away from the equilibrium, such as the hot-electron effect induced by the external electric field parallel to the quantum well. We find that the spin polarization/coherence oscillates along the transport direction even when there is no external magnetic field. We show that when the scattering is strong enough, electron spins with different momentums oscillate in the same phase which leads to equal transversal spin injection length and ensemble transversal injection length. It is also shown that the intrinsic scattering is already strong enough for such a phenomena. The oscillation period is almost independent on the external electric field which is in agreement with the latest experiment in bulk system at very low temperature [Europhys. Lett. {\bf 75}, 597 (2006)]. The spin relaxation/dephasing along the diffusion/transport can be well understood by the inhomogeneous broadening, which is caused by the momentum-dependent diffusion and the spin-orbit coupling, and the scattering. The scattering, temperature, quantum well width and external magnetic/electric field dependence of the spin diffusion is studied in detail.Comment: 12 pages, 6 figures, to be published in J Appl. Phy

    Charged Black Holes in a Rotating Gross-Perry-Sorkin Monopole Background

    Full text link
    We present a new class of stationary charged black hole solutions to five-dimensional Einstein-Maxwell-Chern-Simons theories. We construct the solutions by utilizing so called the squashing transformation. At infinity, our solutions behave as a four-dimensional flat spacetime plus a `circle' and hence describe a Kaluza-Klein black hole. More precisely, our solutions can be viewed as a charged rotating black hole in a rotating Gross-Perry-Sorkin monopole background with the black hole rotation induced from the background rotation.Comment: 25 pages, 6 figure

    Hole spin relaxation in [001] strained asymmetric Si/SiGe and Ge/SiGe quantum wells

    Full text link
    Hole spin relaxation in [001] strained asymmetric Si/Si0.7_{0.7}Ge0.3_{0.3} (Ge/Si0.3_{0.3}Ge0.7_{0.7}) quantum wells is investigated in the situation with only the lowest hole subband being relevant. The effective Hamiltonian of the lowest hole subband is obtained by the subband L\"owdin perturbation method in the framework of the six-band Luttinger kp{\bf k}\cdot{\bf p} model, with sufficient basis functions included. The lowest hole subband in Si/SiGe quantum wells is light-hole like with the Rashba spin-orbit coupling term depending on momentum both linearly and cubically, while that in Ge/SiGe quantum wells is a heavy hole state with the Rashba spin-orbit coupling term depending on momentum only cubically. The hole spin relaxation is investigated by means of the fully microscopic kinetic spin Bloch equation approach, with all the relevant scatterings considered. It is found that the hole-phonon scattering is very weak, which makes the hole-hole Coulomb scattering become very important. The hole system in Si/SiGe quantum wells is generally in the strong scattering limit, while that in Ge/SiGe quantum wells can be in either the strong or the weak scattering limit. The Coulomb scattering leads to a peak in both the temperature and hole density dependences of spin relaxation time in Si/SiGe quantum wells, located around the crossover between the degenerate and nondegenerate regimes. Nevertheless, the Coulomb scattering leads to not only a peak but also a valley in the temperature dependence of spin relaxation time in Ge/SiGe quantum wells.... (The remaining is omitted due to the limit of space).Comment: 12 pages, 11 figures, PRB in pres

    Schwarzschild black hole levitating in the hyperextreme Kerr field

    Full text link
    The equilibrium configurations between a Schwarzschild black hole and a hyperextreme Kerr object are shown to be described by a three-parameter subfamily of the extended double-Kerr solution. For this subfamily, its Ernst potential and corresponding metric functions, we provide a physical representation which employs as arbitrary parameters the individual Komar masses and relative coordinate distance between the sources. The calculation of horizon's local angular velocity induced in the Schwarzschild black hole by the Kerr constituent yields a simple expression inversely proportional to the square of the distance parameter.Comment: 6 pages, 1 figure; improved versio

    Sequences of dipole black rings and Kaluza-Klein bubbles

    Full text link
    We construct new exact solutions to 5D Einstein-Maxwell equations describing sequences of Kaluza-Klein bubbles and dipole black rings. The solutions are generated by 2-soliton transformations from vacuum black ring - bubble sequences. The properties of the solutions are investigated. We also derive the Smarr-like relations and the mass and tension first laws in the general case for such configurations of Kaluza-Klein bubbles and dipole black rings. The novel moment is the appearance of the magnetic flux in the Smarr-like relations and the first laws.Comment: 26 pages, 1 figur
    corecore