383 research outputs found

    Probability-Changing Cluster Algorithm for Potts Models

    Full text link
    We propose a new effective cluster algorithm of tuning the critical point automatically, which is an extended version of Swendsen-Wang algorithm. We change the probability of connecting spins of the same type, p=1−e−J/kBTp = 1 - e^{- J/ k_BT}, in the process of the Monte Carlo spin update. Since we approach the canonical ensemble asymptotically, we can use the finite-size scaling analysis for physical quantities near the critical point. Simulating the two-dimensional Potts models to demonstrate the validity of the algorithm, we have obtained the critical temperatures and critical exponents which are consistent with the exact values; the comparison has been made with the invaded cluster algorithm.Comment: 4 pages including 5 eps figures, RevTeX, to appear in Phys. Rev. Let

    Magnetic properties of the spin-1/2 XXZ model on the Shastry-Sutherland lattice: Effect of long-range interactions

    Full text link
    We study magnetic properties of the S=1/2S=1/2 Ising-like XXZ model on the Shastry-Sutherland lattices with long-range interactions, using the quantum Monte Carlo method. This model shows magnetization plateau phases at one-half and one-third of the saturation magnetization when additional couplings are considered. We investigate the finite temperature transition to one-half and one-third plateau phases. The obtained results suggest that the former case is of the first order and the latter case is of the second order. We also find that the system undergoes two successive transitions with the 2D Ising model universality, although there is a single phase transition in the Ising limit case. Finally, we estimate the coupling ratio to explain the magnetization process observed in TmB4{\rm TmB_4}Comment: 5 pages, 6 figure

    Spin-glass transition in bond-disordered Heisenberg antiferromagnets coupled with local lattice distortions on a pyrochlore lattice

    Full text link
    Motivated by puzzling characteristics of spin-glass transitions widely observed in pyrochlore-based frustrated materials, we investigate effects of coupling to local lattice distortions in a bond-disordered antiferromagnet on the pyrochlore lattice by extensive Monte Carlo simulations. We show that the spin-glass transition temperature \TSG is largely enhanced by the spin-lattice coupling, and furthermore, becomes almost independent of Δ\Delta in a wide range of the disorder strength Δ\Delta. The critical property of the spin glass transition is indistinguishable from that of the canonical Heisenberg spin glass in the entire range of Δ\Delta. These peculiar behaviors are ascribed to a modification of the degenerate manifold from continuous to semidiscrete one by the spin-lattice coupling.Comment: 4 pages, 3 figures, major revisions, accepted for publication in PR
    • …
    corecore