194 research outputs found

    Changes in Knowledge Levels through Lectures on Radiotherapy to Nursing Students in Japan

    Get PDF
    Background:Recently, the number of patients choosing radiotherapy is increasing in Japan. It is necessary for even nurses to have knowledge of radiotherapy. We measured the degree of awareness with a lecture on how a nursing student can obtain knowledge of radiotherapy.Materials and methods: Forty nursing students who were in their third year and preparing for their national nursing certification in two months were recruited. The 90-min lecture covered a range of topics from general theories to specific concepts. The students were not informed that they would be required to fill a survey at the end of the lecture. This was to avoid bias that could occur from knowing in advance that a survey would be conducted.Results: The following items below were particularly remarkable. The distinction between the radiologist and the radiation oncologist. The radiotherapy is a local therapy. The pain from bone metastasis could be relieved.Conclusion: Students had very little knowledge on radiotherapy before the lecture. the results of this study indicated the need to increase the number of lectures on radiotherapy for nursing as well medical students. As the number of radiotherapy patients increases

    CPL on/off control of an assembled system by water soluble macrocyclic chiral sources with planar chirality

    Get PDF
    Herein, we report the synthesis and planar chiral properties of a pair of water-soluble cationic pillar[5]arenes with stereogenic carbons. Interestingly, although units of the molecules were rotatable, only one planar chiral diastereomer existed in water in both cases. As a new type of chiral source, these molecules transmitted chiral information from the planar chiral cavities to the assembly of a water-soluble extended π-conjugated compound, affording circularly polarized luminescence (CPL). The chirality transfer process and resulting CPL were extremely sensitive to the feed ratio of the chiral pillar[5]arenes owing to the combined action of their planar chirality, bulkiness, and strong binding properties. When a limited amount of chiral source was added, further assembly of the extended π-conjugated compound into helical fibers with CPL was triggered. Unexpectedly, larger amounts of chiral source destroyed the helical fiber assemblies, resulting in elimination of the chirality and CPL properties from the assembled structures

    Strong Spin-Motion Coupling in the Ultrafast Quantum Many-body Dynamics of Rydberg Atoms in a Mott-insulator Lattice

    Full text link
    Rydberg atoms in optical lattices and tweezers is now a well established platform for simulating quantum spin systems. However, the role of the atoms' spatial wavefunction has not been examined in detail experimentally. Here, we show a strong spin-motion coupling emerging from the large variation of the interaction potential over the wavefunction spread. We observe its clear signature on the ultrafast, out-of-equilibrium, many-body dynamics of atoms excited to a Rydberg S state from an unity-filling atomic Mott-insulator. We also propose a novel approach to tune arbitrarily the strength of the spin-motion coupling relative to the motional energy scale set by trapping potentials. Our work provides a new direction for exploring the dynamics of strongly-correlated quantum systems by adding the motional degree of freedom to the Rydberg simulation toolbox

    Gravity sensing in plant and animal cells

    Get PDF
    Gravity determines shape of body tissue and affects the functions of life, both in plants and animals. The cellular response to gravity is an active process of mechanotransduction. Although plants and animals share some common mechanisms of gravity sensing in spite of their distant phylogenetic origin, each species has its own mechanism to sense and respond to gravity. In this review, we discuss current understanding regarding the mechanisms of cellular gravity sensing in plants and animals. Understanding gravisensing also contributes to life on Earth, e.g., understanding osteoporosis and muscle atrophy. Furthermore, in the current age of Mars exploration, understanding cellular responses to gravity will form the foundation of living in space

    Pillar[6]arene acts as a biosensor for quantitative detection of a vitamin metabolite in crude biological samples

    Get PDF
    ビタミン代謝物を迅速定量できる超分子バイオセンサーを開発. 京都大学プレスリリース. 2020-12-09.Metabolic syndrome is associated with obesity, hypertension, and dyslipidemia, and increased cardiovascular risk. Therefore, quick and accurate measurements of specific metabolites are critical for diagnosis; however, detection methods are limited. Here we describe the synthesis of pillar[n]arenes to target 1-methylnicotinamide (1-MNA), which is one metabolite of vitamin B3 (nicotinamide) produced by the cancer-associated nicotinamide N-methyltransferase (NNMT). We found that water-soluble pillar[5]arene (P5A) forms host–guest complexes with both 1-MNA and nicotinamide, and water-soluble pillar[6]arene (P6A) selectively binds to 1-MNA at the micromolar level. P6A can be used as a “turn-off sensor” by photoinduced electron transfer (detection limit is 4.38 × 10−6 M). In our cell-free reaction, P6A is used to quantitatively monitor the activity of NNMT. Moreover, studies using NNMT-deficient mice reveal that P6A exclusively binds to 1-MNA in crude urinary samples. Our findings demonstrate that P6A can be used as a biosensor to quantify 1-MNA in crude biological samples

    Sunitinib Versus Sorafenib as Initial Targeted Therapy for mCC-RCC With Favorable/Intermediate Risk: Multicenter Randomized Trial CROSS-J-RCC

    Get PDF
    Purpose: The present study compared the efficacy of sunitinib and sorafenib as first-line treatment of metastatic clear cell renal cell carcinoma (mCC-RCC) with favorable or intermediate Memorial Sloan Kettering Cancer Center (MSKCC) risk. Patients and methods: Treatment-naive patients with mCC-RCC were randomized to receive open-label sunitinib followed by sorafenib (SU/SO) or sorafenib followed by sunitinib (SO/SU). The primary endpoint was first-line progression-free survival (PFS). The secondary endpoints were total PFS and overall survival (OS). Results: Of the 124 patients enrolled at 39 institutions from February 2010 to July 2012, 120 were evaluated. The median first-line PFS duration was 8.7 and 7.0 months in the SU/SO and SO/SU groups, respectively (hazard ratio [HR], 0.67; 95% confidence interval [CI], 0.42-1.08). The total PFS and OS were not significantly different between the SU/SO and SO/SU groups (27.8 and 22.6 months; HR, 0.73; 95% CI, 0.428-1.246; and 38.4 and 30.9 months; HR, 0.934; 95% CI, 0.588-1.485, respectively). The subgroup analysis revealed that the total PFS with SU/SO was superior to the total PFS with SO/SU in the patients with favorable MSKCC risk and those with Conclusions: No statistically significant differences were found in first-line PFS, total PFS, or OS between the 2 treatment arms (ClinicalTrials.gov identifier, NCT01481870)

    Thymidine Catabolism as a Metabolic Strategy for Cancer Survival

    Get PDF
    Thymidine phosphorylase (TP), a rate-limiting enzyme in thymidine catabolism, plays a pivotal role in tumor progression; however, the mechanisms underlying this role are not fully understood. Here, we found that TP-mediated thymidine catabolism could supply the carbon source in the glycolytic pathway and thus contribute to cell survival under conditions of nutrient deprivation. In TP-expressing cells, thymidine was converted to metabolites, including glucose 6-phosphate, lactate, 5-phospho-α-D-ribose 1-diphosphate, and serine, via the glycolytic pathway both in vitro and in vivo. These thymidine-derived metabolites were required for the survival of cells under low-glucose conditions. Furthermore, activation of thymidine catabolism was observed in human gastric cancer. These findings demonstrate that thymidine can serve as a glycolytic pathway substrate in human cancer cells

    Thymidine catabolism promotes NADPH oxidase-derived reactive oxygen species (ROS) signalling in KB and yumoto cells

    Get PDF
    Thymidine phosphorylase (TP) is a rate-limiting enzyme in the thymidine catabolic pathway. TP is identical to platelet-derived endothelial cell growth factor and contributes to tumour angiogenesis. TP induces the generation of reactive oxygen species (ROS) and enhances the expression of oxidative stress-responsive genes, such as interleukin (IL)-8. However, the mechanism underlying ROS induction by TP remains unclear. In the present study, we demonstrated that TP promotes NADPH oxidase-derived ROS signalling in cancer cells. NADPH oxidase inhibition using apocynin or small interfering RNAs (siRNAs) abrogated the induction of IL-8 and ROS in TP-expressing cancer cells. Meanwhile, thymidine catabolism induced by TP increased the levels of NADPH and intermediates of the pentose phosphate pathway (PPP). Both siRNA knockdown of glucose 6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme in PPP, and a G6PD inhibitor, dihydroepiandrosterone, reduced TP-induced ROS production. siRNA downregulation of 2-deoxy-D-ribose 5-phosphate (DR5P) aldolase, which is needed for DR5P to enter glycolysis, also suppressed the induction of NADPH and IL-8 in TP-expressing cells. These results suggested that TP-mediated thymidine catabolism increases the intracellular NADPH level via the PPP, which enhances the production of ROS by NADPH oxidase and activates its downstream signalling

    Basic fibroblast growth factor promotes meniscus regeneration through the cultivation of synovial mesenchymal stem cells via the CXCL6–CXCR2 pathway

    Full text link
    Objective: To investigate the efficacy of basic fibroblast growth factor (bFGF) in promoting meniscus regeneration by cultivating synovial mesenchymal stem cells (SMSCs) and to validate the underlying mechanisms. Methods: Human SMSCs were collected from patients with osteoarthritis. Eight-week-old nude rats underwent hemi-meniscectomy, and SMSCs in pellet form, either with or without bFGF (1.0 × 106 cells per pellet), were implanted at the site of meniscus defects. Rats were divided into the control (no transplantation), FGF (−) (pellet without bFGF), and FGF (+) (pellet with bFGF) groups. Different examinations, including assessment of the regenerated meniscus area, histological scoring of the regenerated meniscus and cartilage, meniscus indentation test, and immunohistochemistry analysis, were performed at 4 and 8 weeks after surgery. Results: Transplanted SMSCs adhered to the regenerative meniscus. Compared with the control group, the FGF (+) group had larger regenerated meniscus areas, superior histological scores of the meniscus and cartilage, and better meniscus mechanical properties. RNA sequencing of SMSCs revealed that the gene expression of chemokines that bind to CXCR2 was upregulated by bFGF. Furthermore, conditioned medium derived from SMSCs cultivated with bFGF exhibited enhanced cell migration, proliferation, and chondrogenic differentiation, which were specifically inhibited by CXCR2 or CXCL6 inhibitors. Conclusion: SMSCs cultured with bFGF promoted the expression of CXCL6. This mechanism may enhance cell migration, proliferation, and chondrogenic differentiation, thereby resulting in superior meniscus regeneration and cartilage preservation.Goshima A., Etani Y., Hirao M., et al. Basic fibroblast growth factor promotes meniscus regeneration through the cultivation of synovial mesenchymal stem cells via the CXCL6–CXCR2 pathway. Osteoarthritis and Cartilage , (2023); https://doi.org/10.1016/j.joca.2023.07.010

    Changes in Pediatric Patient Trends in Eating and Swallowing Disorders: A Comparison between the First and Fifth Year after Establishment of the Special Needs Dental Center

    Get PDF
    A Special Needs Dental Center (hereafter referred to as the Center) was established at Showa University Dental Hospital in April 2012 to treat patients who need special care. In cooperation with the Division of Dentistry for Persons with Disabilities, the Division of Hygiene and Oral Health is mainly engaged in the treatment of patients with eating and swallowing disorders. It has been five years since the establishment of the Center. The present study was aimed to establish an effective medical support method through a comparative study of changes in patient trends. A total of 65 patients who visited the Center from April 2017 to March 2018 were examined and their statistics were compared with those of 60 previously reported patients who initially visited the Center for medical examination in 2012. In 2012, many visits occurred during the nursing period; however, in 2017, the number of patients who visited after the weaning period increased. Other noted trends were increased diversity in primary disease, more patient referrals, fewer patients with severe swallowing dysfunction, and more patients with oral dysfunction. The necessity of eating and swallowing practice is thought to increase when lifestyle and oral environment change. The treatment of eating and swallowing disorders is important in the dental profession. Due to the introduction of insurance coverage in Japan in 2018 for developmental insufficiency of oral function, more pediatric patients with eating and swallowing disorders will likely be treated in the future
    corecore