29 research outputs found
Detection of vascular endothelial growth factor in colon cancer xenografts using bevacizumab based near infrared fluorophore conjugate.
BACKGROUND: The aim of this study was to develop the near infrared fluorescence (NIRF)-based imaging agent for the visualization of vascular endothelial growth factor (VEGF) in colon cancer. AlexaFluor 750 conjugating with bevacizumab, and injected intravenously into nude mice bearing VEGF over-expressing HT29 human colorectal cancer. Optical imaging was performed at 15 min, 24 h and 48 h post injection. Immunofluorescences staining of the tumor sections were performed. HT29 colorectal cancer xenografts were clearly visualized with bevacizumab-AlexaFluor 750.
RESULTS: Ex vivo analysis showed 2.1 ± 0.4%, 37.6 ± 6.3% and 38.5 ± 6.2% injected dose/g accumulated in the tumors at 15 min, 24 h and 48 h respectively. Tumor uptake was significantly decreased in pretreated with excess of bevacizumab (p = 0.002). Immunofluorescence analysis showed strong staining of anti-CD 31 antibody around the blood vessels. Anti-VEGF-A and bevacizumab showed heterogeneous expression throughout the tumor.
CONCLUSIONS: Current study successfully detected the VEGF expression in HT29 colorectal cancer xenografts, signifying as a potential agent for non-invasive imaging of VEGF expression, which may be applied in clinical practice
High resolution carbon isotope stratigraphy across the Cenomaian/Turonian boundary in the Tappu area, Hokkaido, Japan : correlation with world reference sections
Received March 2, 2010 and accepted in revised from March 11, 201
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
Guanfacine poisoning resulting in transient ST-segment elevation: a case report
Abstract Background Guanfacine is an alpha-2 adrenergic agonist that decreases norepinephrine release and sympathetic outflow. With the increased use of guanfacine for attention-deficit hyperactivity disorder (ADHD), reports of guanfacine poisoning have also risen. Case presentation A 15-year-old male (height: 170 cm, weight: 48 kg), who was taking 2 mg/day of guanfacine for ADHD, was brought to our emergency department after ingesting 40 tablets of guanfacine due to poor exam results. He presented with impaired consciousness and sinus bradycardia on an electrocardiogram (ECG), leading to diagnosis of guanfacine poisoning. Gastric lavage (5 L) was performed, and activated charcoal was administered. Although his consciousness gradually recovered, he developed ST-segment elevation on the ECG. Despite the absence of chest pain and elevated myocardial enzymes, coronary artery stenosis was not observed on coronary artery computed tomography. As his blood guanfacine level decreased, his ECG returned to normal. Conclusions This case highlights the need for careful monitoring of guanfacine poisoning patients due to the potential for various cardiovascular events