85 research outputs found

    Plane Gravitational Radiation from Neutrinos Source with Kalb-Ramond Coupling

    Full text link
    In this work, we propose a model based on a non-minimal coupling of neutrinos to a Kalb-Ramond field. The latter is taken as a possible source for gravitational radiation. As an immediate illustration of this system, we have studied the case where gravitational (plane) wave solutions behave as damped harmonic oscillators.Comment: Presented at 7th Alexander Friedmann International Seminar on Gravitation and Cosmology, Joao Pessoa, Brazil, 29-05 Jul 200

    Gravitational Collapse of Circularly Symmetric Stiff Fluid with Self-Similarity in 2+1 Gravity

    Full text link
    Linear perturbations of homothetic self-similar stiff fluid solutions, S[n]S[n], with circular symmetry in 2+1 gravity are studied. It is found that, except for those with n=1n = 1 and n=3n = 3, none of them is stable and all have more than one unstable mode. Hence, {\em none of these solutions can be critical}.Comment: latex file, 1 figure; last version to appear in Prog. Theor. Phy

    On the Thermodynamics of Simple Non-Isentropic Perfect Fluids in General Relativity

    Full text link
    We examine the consistency of the thermodynamics of irrotational and non-isentropic perfect fluids complying with matter conservation by looking at the integrability conditions of the Gibbs-Duhem relation. We show that the latter is always integrable for fluids of the following types: (a) static, (b) isentropic (admits a barotropic equation of state), (c) the source of a spacetime for which r≥2r\ge 2, where rr is the dimension of the orbit of the isometry group. This consistency scheme is tested also in two large classes of known exact solutions for which r<2r< 2, in general: perfect fluid Szekeres solutions (classes I and II). In none of these cases, the Gibbs-Duhem relation is integrable, in general, though specific particular cases of Szekeres class II (all complying with r<2r<2) are identified for which the integrability of this relation can be achieved. We show that Szekeres class I solutions satisfy the integrability conditions only in two trivial cases, namely the spherically symmetric limiting case and the Friedman-Roberson-Walker (FRW) cosmology. Explicit forms of the state variables and equations of state linking them are given explicitly and discussed in relation to the FRW limits of the solutions. We show that fixing free parameters in these solutions by a formal identification with FRW parameters leads, in all cases examined, to unphysical temperature evolution laws, quite unrelated to those of their FRW limiting cosmologies.Comment: 29 pages, Plain.Te
    • …
    corecore