301 research outputs found

    Relativistic Dynamos in Magnetospheres of Rotating Compact Objects

    Get PDF
    The kinematic evolution of axisymmetric magnetic fields in rotating magnetospheres of relativistic compact objects is analytically studied, based on relativistic Ohm's law in stationary axisymmetric geometry. By neglecting the poloidal flows of plasma in simplified magnetospheric models, we discuss self-excited dynamos due to the frame-dragging effect (originally pointed out by Khanna & Camenzind), and we propose alternative processes to generate axisymmetric magnetic fields against ohmic dissipation. The first process (which may be called induced excitation) is caused by the help of a background uniform magnetic field in addition to the dragging of inertial frames. It is shown that excited multipolar components of poloidal and azimuthal fields are sustained as stationary modes, and outgoing Poynting flux converges toward the rotation axis. The second one is self-excited dynamo through azimuthal convection current, which is found to be effective if plasma rotation becomes highly relativistic with a sharp gradient in the angular velocity. In this case no frame-dragging effect is needed, and the coupling between charge separation and plasma rotation becomes important. We discuss briefly the results in relation to active phenomena in the relativistic magnetospheres.Comment: 16 pages, AASLaTeX macros v4.

    Electromagnetic radiation due to naked singularity formation in self-similar gravitational collapse

    Full text link
    Dynamical evolution of test fields in background geometry with a naked singularity is an important problem relevant to the Cauchy horizon instability and the observational signatures different from black hole formation. In this paper we study electromagnetic perturbations generated by a given current distribution in collapsing matter under a spherically symmetric self-similar background. Using the Green's function method, we construct the formula to evaluate the outgoing energy flux observed at the future null infinity. The contributions from "quasi-normal" modes of the self-similar system as well as "high-frequency" waves are clarified. We find a characteristic power-law time evolution of the outgoing energy flux which appears just before naked singularity formation, and give the criteria as to whether or not the outgoing energy flux diverges at the future Cauchy horizon.Comment: 20 pages, 7 figures, references added to match the published versio

    Distortion of Schwarzschild-anti-de Sitter black holes to black strings

    Full text link
    Motivated by the existence of black holes with various topologies in four-dimensional spacetimes with a negative cosmological constant, we study axisymmetric static solutions describing any large distortions of Schwarzschild-anti-de Sitter black holes parametrized by the mass mm. Under the approximation such that mm is much larger than the anti-de Sitter radius, it is found that a cylindrically symmetric black string is obtained as a special limit of distorted spherical black holes. Such a prolonged distortion of the event horizon connecting a Schwarzschild-anti-de Sitter black hole to a black string is allowed without violating both the usual black hole thermodynamics and the hoop conjecture for the horizon circumference.Comment: 13 pages, accepted for publication in Physical Review

    Black Hole Magnetospheres Around Thin Disks Driving Inward and Outward Winds

    Get PDF
    We construct a simple model for stationary, axisymmetric black-hole magnetospheres, in which the poloidal magnetic field is generated by a toroidal electric current in a thin disk with the inner edge, by solving the vacuum Maxwell equations in Schwarzschild background. In this work, to obtain a concise analytical form of the magnetic stream function, we use the approximation that the inner edge is far distant from the event horizon. The global magnetospheric structure with the closed-loop and open field lines threading the inner and outer parts of the disk is explicitly shown, claiming that the model is useful as a starting point to study astrophysical problems involving inward disk-driven winds to a black hole and outward ones to infinity. The asymptotic shape of the field lines at the event horizon becomes nearly cylindrical, while at infinity it becomes conical. The magnetic spot in the disk connected with the black hole through the loop field lines occupies a very narrow region with the ring area roughly equal to the horizon area. By taking account of the existence of a uniform (external) magnetic field, we also obtain the model for collimated open field lines. Then, it is found that the magnetic connection between the black hole and the disk breaks down if the uniform field is strong enough. Considering slow rotation of the magnetosphere and angular momentum transfer by inward winds from the disk, the final discussion is devoted to gradual disruption of the closed loops due to radial accretion of disk plasma toward the black hole.Comment: 15 pages 4 figures accepted for publication in Ap

    Asymptotic tails of massive scalar fields in Schwarzschild background

    Get PDF
    We investigate the asymptotic tail behavior of massive scalar fields in Schwarzschild background. It is shown that the oscillatory tail of the scalar field has the decay rate of t−5/6t^{-5/6} at asymptotically late times, and the oscillation with the period 2π/m2\pi/m for the field mass mm is modulated by the long-term phase shift. These behaviors are qualitatively similar to those found in nearly extreme Reissner-Nordstr\"{o}m background, which are discussed in terms of a resonant backscattering due to the space-time curvature.Comment: 21 pages, 2 figures, accepted for publication in Phys.Rev.

    The double-Kerr equilibrium configurations involving one extreme object

    Full text link
    We demonstrate the existence of equilibrium states in the limiting cases of the double-Kerr solution when one of the constituents is an extreme object. In the `extreme-subextreme' case the negative mass of one of the constituents is required for the balance, whereas in the `extreme-superextreme' equilibrium configurations both Kerr particles may have positive masses. We also show that the well-known relation |J|=M^2 between the mass and angular momentum in the extreme single Kerr solution ceases to be a characteristic property of the extreme Kerr particle in a binary system.Comment: 12 pages, 3 figures, submitted to Class. Quantum Gra

    The X-ray jet in the Crab Nebula: radical implications for pulsar theory?

    Full text link
    The recent Chandra image of the Crab nebula shows a striking, axisymmetric polar jet. It is shown that jets are formed in axisymmetric, magnetized pulsar winds and that the jet luminosity scales relative to the total as (\gamma_0\sigma_{eq})^{-4/3}, where \sigma_{eq} is the ratio of Poynting flux to particle kinetic energy output at the equator at the base of the flow and \gamma_0 the initial Lorentz factor of the flow. The results are applied to the image of the Crab nebula, and the limit is set for the Crab pulsar of \sigma_{eq} \leq 100. It is argued that conventional pulsar theory needs to be reexamined in light of these limits.Comment: 13 page

    Vacuum polarization of scalar fields near Reissner-Nordstr\"{o}m black holes and the resonance behavior in field-mass dependence

    Get PDF
    We study vacuum polarization of quantized massive scalar fields ϕ\phi in equilibrium at black-hole temperature in Reissner-Nordstr\"{o}m background. By means of the Euclidean space Green's function we analytically derive the renormalized expression H_{H} at the event horizon with the area 4πr+24\pi r_{+}^{2}. It is confirmed that the polarization amplitude H_{H} is free from any divergence due to the infinite red-shift effect. Our main purpose is to clarify the dependence of H_{H} on field mass mm in relation to the excitation mechanism. It is shown for small-mass fields with mr+â‰Ș1mr_{+}\ll1 how the excitation of H_{H} caused by finite black-hole temperature is suppressed as mm increases, and it is verified for very massive fields with mr+≫1mr_{+}\gg1 that H_{H} decreases in proportion to m−2m^{-2} with the amplitude equal to the DeWitt-Schwinger approximation. In particular, we find a resonance behavior with a peak amplitude at mr+≃0.38mr_{+}\simeq 0.38 in the field-mass dependence of vacuum polarization around nearly extreme (low-temperature) black holes. The difference between Scwarzschild and nearly extreme black holes is discussed in terms of the mass spectrum of quantum fields dominant near the event horizon.Comment: 24 pages, 1 figure Accepted in PR

    Disk illumination by black hole superradiance of electromagnetic perturbations

    Full text link
    Using the Kerr-Schild formalism to solve the Einstein-Maxwell equations, we study energy transport due to time-dependent electromagnetic perturbations around a Kerr black hole, which may work as a mechanism to illuminate a disk located on the equatorial plane. For such a disk-hole system it is found that the energy extraction from the hole can occur under the well-known superradiance condition for wave frequency, even though the energy absorption into the hole should be rather dominant near the polar region of the horizon. We estimate the efficiency of the superradiant amplification of the disk illumination. Further we calculate the time-averaged energy density distribution to show explicitly the existence of a negative energy region near the horizon and to discuss the possible generation of a hot spot on the disk.Comment: 11 pages, 4 figures, corrected typos, published in Physical Review

    Hoop conjecture for colliding black holes : non-time-symmetric initial data

    Get PDF
    The hoop conjecture is well confirmed in momentarily static spaces, but it has not been investigated systematically for the system with relativistic motion. To confirm the hoop conjecture for non-time-symmetric initial data, we consider the initial data of two colliding black holes with momentum and search an apparent horizon that encloses two black holes. In testing the hoop conjecture, we use two definitions of gravitational mass : one is the ADM mass and the other is the quasi-local mass defined by Hawking. Although both definitions of gravitational mass give fairly consistent picture of the hoop conjecture, the hoop conjecture with the Hawking mass can judge the existence of an apparent horizon for wider range of parameters of the initial data compared to the ADM mass.Comment: 15pages, 4 figure
    • 

    corecore