59 research outputs found

    A Spectral Study of the Black Hole Candidate XTE J1752-223 in the High/Soft State with MAXI, Suzaku and Swift

    Full text link
    We report on the X-ray spectral analysis of the black hole candidate XTE\ J1752--223 in the 2009--2010 outburst, utilizing data obtained with the MAXI/Gas Slit Camera (GSC), the Swift/XRT, and Suzaku, which work complementarily. As already reported by Nakahira et al. (2010) MAXI monitored the source continuously throughout the entire outburst for about eight months. All the MAXI/GSC energy spectra in the high/soft state lasting for 2 months are well represented by a multi-color disk plus power-law model. The innermost disk temperature changed from \sim0.7 keV to \sim0.4 keV and the disk flux decreased by an order of magnitude. Nevertheless, the innermost radius is constant at \sim41 D3.5(cosi)1/2D_{3.5}(\cos{\it i})^{-1/2} km, where D3.5D_{3.5} is the source distance in units of 3.5 kpc and ii the inclination. The multi-color disk parameters obtained with the MAXI/GSC are consistent with those with the Swift/XRT and Suzaku. The Suzaku data also suggests a possibility that the disk emission is slightly Comptonized, which could account for broad iron-K features reported previously. Assuming that the obtained innermost radius represents the innermost stable circular orbit for a non-rotating black hole, we estimate the mass of the black hole to be 5.51±\pm0.28 MM_{\odot} D3.5(cosi)1/2D_{3.5}(\cos{\it i})^{-1/2}, where the correction for the stress-free inner boundary condition and color hardening factor of 1.7 are taken into account. If the inclination is less than 49^{\circ} as suggested from the radio monitoring of transient jets and the soft-to-hard transition in 2010 April occurred at 1--4% of Eddignton luminosity, the fitting of the Suzaku spectra with a relativistic accretion-disk model derives constraints on the mass and the distance to be 3.1--55 MM_{\odot} and 2.3--22 {\rm kpc}, respectively. This confirms that the compact object in XTE J1752--223 is a black hole.Comment: 12 pages including 7 figures and 4 tables, accepted for publication in PAS

    Outburst of LS V+44 17 Observed by MAXI and RXTE, and Discovery of a Dip Structure in the Pulse Profile

    Full text link
    We report on the first observation of an X-ray outburst of a Be/X-ray binary pulsar LS V +44 17/RX J0440.9+4431, and the discovery of an absorption dip structure in the pulse profile. An outburst of this source was discovered by MAXI GSC in 2010 April. It was the first detection of the transient activity of LS V +44 17 since the source was identified as a Be/X-ray binary in 1997. From the data of the follow-up RXTE observation near the peak of the outburst, we found a narrow dip structure in its pulse profile which was clearer in the lower energy bands. The pulse-phase-averaged energy spectra in the 3-100 keV band can be fitted with a continuum model containing a power-law function with an exponential cutoff and a blackbody component, which are modified at low energy by an absorption component. A weak iron Kα\alpha emission line is also detected in the spectra. From the pulse-phase-resolved spectroscopy we found that the absorption column density at the dip phase was much higher than those in the other phases. The dip was not seen in the subsequent RXTE observations at lower flux levels. These results suggest that the dip in the pulse profile originates from the eclipse of the radiation from the neutron star by the accretion column.Comment: 18 pages, 7 figures, accepted for publication in PAS

    Bright X-ray flares from the BL Lac object Mrk 421, detected with MAXI in 2010 January and February

    Full text link
    Strong X-ray flares from the blazar Mrk 421 were detected in 2010 January and February through the 7 month monitoring with the MAXI GSC. The maximum 2 -- 10 keV flux in the January and February flares was measured as 120 +- 10 mCrab and 164 +- 17 mCrab respectively; the latter is the highest among those reported from the object. A comparison of the MAXI and Swift BAT data suggests a convex X-ray spectrum with an approximated photon index of about 2. This spectrum is consistent with a picture that MAXI is observing near the synchrotron peak frequency. The source exhibited a spectral variation during these flares, slightly different from those in the previous observations, in which the positive correlation between the flux and hardness was widely reported. By equating the halving decay timescale in the January flare, td2.5×104t_{\rm d} \sim 2.5 \times 10^{4} s, to the synchrotron cooling time, the magnetic field was evaluated as B = 0.045 G (δ/10)1/3(\delta/10)^{-1/3}, where δ\delta is the jet beaming factor. Assuming that the light crossing time of the emission region is shorter than the doubling rise time, tr2×104t_{\rm r} \lesssim 2 \times 10^{4} s, the region size was roughly estimated as R<6×1015 R < 6 \times 10^{15} cm (δ/10)(\delta/10). These are consistent with the values previously reported. For the February flare, the rise time, tr<1.3×105t_{\rm r} < 1.3 \times 10^{5} s, gives a loose upper limit on the size as R<4×1016 R < 4 \times 10^{16} cm (δ/10)(\delta/10), although the longer decay time td1.4×105t_{\rm d} \sim 1.4 \times 10^{5} s, indicates B = 0.015 G (δ/10)1/3(\delta/10)^{-1/3}, which is weaker than the previous results. This could be reconciled by invoking a scenario that this flare is a superposition of unresolved events with a shorter timescale.Comment: 14 pages, 4 figures, accepted for PASJ (Vol. 62 No. 6

    The MAXI Mission on the ISS: Science and Instruments for Monitoring All Sky X-Ray Images

    Full text link
    The MAXI (Monitor of All-sky X-ray Image) mission is the first astronomical payload to be installed on the Japanese Experiment Module-Exposed Facility (JEM-EF) on the ISS. It is scheduled for launch in the middle of 2009 to monitor all-sky X-ray objects on every ISS orbit. MAXI will be more powerful than any previous X-ray All Sky Monitor (ASM) payloads, being able to monitor hundreds of AGN. MAXI will provide all sky images of X-ray sources of about 20 mCrab in the energy band of 2-30 keV from observation on one ISS orbit (90 min), about 4.5 mCrab for one day, and about 1 mCrab for one month. A final detectability of MAXI could be 0.2 mCrab for 2 year observations.Comment: 12 pages, 11 figures, accepted for publication in Publications of the Astronomical Society of Japa

    MAXI GSC observations of a spectral state transition in the black hole candidate XTE J1752-223

    Full text link
    We present the first results on the black hole candidate XTE J1752-223 from the Gas Slit Camera (GSC) on-board the Monitor of All-sky X-ray Image (MAXI) on the International Space Station. Including the onset of the outburst reported by the Proportional Counter Array on-board the Rossi X-ray Timing Explorer on 2009 October 23, the MAXI/GSC has been monitoring this source approximately 10 times per day with a high sensitivity in the 2-20 keV band. XTE J1752-223 was initially in the low/hard state during the first 3 months. An anti-correlated behavior between the 2-4 keV and 4-20 keV bands were observed around January 20, 2010, indicating that the source exhibited the spectral transition to the high/soft state. A transient radio jet may have been ejected when the source was in the intermediate state where the spectrum was roughly explained by a power-law with a photon index of 2.5-3.0. The unusually long period in the initial low/hard state implies a slow variation in the mass accretion rate, and the dramatic soft X-ray increase may be explained by a sudden appearance of the accretion disk component with a relatively low innermost temperature (0.4-0.7 keV). Such a low temperature might suggest that the maximum accretion rate was just above the critical gas evaporation rate required for the state transition.Comment: Publication of Astronomical Society of Japan Vol.62, No.5 (2010) [in print

    Long-term Monitoring of the Black Hole Binary GX 339-4 in the High/Soft State during the 2010 Outburst with MAXI/GSC

    Full text link
    We present the results of monitoring the Galactic black hole candidate GX 339-4 with the Monitor of All-sky X-ray Image (MAXI) / Gas Slit Camera (GSC) in the high/soft state during the outburst in 2010. All the spectra throughout the 8-month period are well reproduced with a model consisting of multi-color disk (MCD) emission and its Comptonization component, whose fraction is <= 25% in the total flux. In spite of the flux variability over a factor of 3, the innermost disk radius is constant at R_in = 61 +/- 2 km for the inclination angle of i = 46 deg and the distance of d=8 kpc. This R_in value is consistent with those of the past measurements with Tenma in the high/soft state. Assuming that the disk extends to the innermost stable circular orbit of a non-spinning black hole, we estimate the black hole mass to be M = 6.8 +/- 0.2 M_sun for i = 46 deg and d = 8 kpc, which is consistent with that estimated from the Suzaku observation of the previous low/hard state. Further combined with the mass function, we obtain the mass constraint of 4.3 M_sun < M < 13.3 M_sun for the allowed range of d = 6-15 kpc and i < 60 deg. We also discuss the spin parameter of the black hole in GX 339-4 by applying relativistic accretion disk models to the Swift/XRT data.Comment: 9 pages, 8 figures, accepted for publication in PASJ (Suzaku+MAXI special issue

    Seven-Signal Proteomic Signature for Detection of Operable Pancreatic Ductal Adenocarcinoma and Their Discrimination from Autoimmune Pancreatitis

    Get PDF
    There is urgent need for biomarkers that provide early detection of pancreatic ductal adenocarcinoma (PDAC) as well as discrimination of autoimmune pancreatitis, as current clinical approaches are not suitably accurate for precise diagnosis. We used mass spectrometry to analyze protein profiles of more than 300 plasma specimens obtained from PDAC, noncancerous pancreatic diseases including autoimmune pancreatitis patients and healthy subjects. We obtained 1063 proteomic signals from 160 plasma samples in the training cohort. A proteomic signature consisting of 7 mass spectrometry signals was used for construction of a proteomic model for detection of PDAC patients. Using the test cohort, we confirmed that this proteomic model had discrimination power equal to that observed with the training cohort. The overall sensitivity and specificity for detection of cancer patients were 82.6% and 90.9%, respectively. Notably, 62.5% of the stage I and II cases were detected by our proteomic model. We also found that 100% of autoimmune pancreatitis patients were correctly assigned as noncancerous individuals. In the present paper, we developed a proteomic model that was shown able to detect early-stage PDAC patients. In addition, our model appeared capable of discriminating patients with autoimmune pancreatitis from those with PDAC

    Overcoming epithelial-mesenchymal transition-mediated drug resistance with monensin-based combined therapy in non-small cell lung cancer

    Get PDF
    Background The epithelial-mesenchymal transition (EMT) is a key process in tumor progression and metastasis and is also associated with drug resistance. Thus, controlling EMT status is a research of interest to conquer the malignant tumors. Materials and methods A drug repositioning analysis of transcriptomic data from a public cell line database identified monensin, a widely used in veterinary medicine, as a candidate EMT inhibitor that suppresses the conversion of the EMT phenotype. Using TGF-β-induced EMT cell line models, the effects of monensin on the EMT status and EMT-mediated drug resistance were assessed. Results TGF-β treatment induced EMT in non-small cell lung cancer (NSCLC) cell lines and the EGFR-mutant NSCLC cell lines with TGF-β-induced EMT acquired resistance to EGFR-tyrosine kinase inhibitor. The addition of monensin effectively suppressed the TGF-β-induced-EMT conversion, and restored the growth inhibition and the induction of apoptosis by the EGFR-tyrosine kinase inhibitor. Conclusion Our data suggested that combined therapy with monensin might be a useful strategy for preventing EMT-mediated acquired drug resistance
    corecore