793 research outputs found
CMB statistics in noncommutative inflation
Noncommutative geometry can provide effective description of physics at very
short distances taking into account generic effects of quantum gravity.
Inflation amplifies tiny quantum fluctuations in the early universe to
macroscopic scales and may thus imprint high energy physics signatures in the
cosmological perturbations that could be detected in the CMB. It is shown here
that this can give rise to parity-violating modulations of the primordial
spectrum and odd non-Gaussian signatures. The breaking of rotational invariance
of the CMB provides constraints on the scale of noncommutativity that are
competitive with the existing noncosmological bounds, and could explain the
curious hemispherical asymmetry that has been claimed to be observed in the
sky. This introduces also non-Gaussianity with peculiar shape- and
scale-dependence, which in principle allows an independent cross-check of the
presence of noncommutativity at inflation.Comment: 9 pages, no figure
DBI Galileons in the Einstein Frame: Local Gravity and Cosmology
It is shown that a disformally coupled theory in which the gravitational
sector has the Einstein-Hilbert form is equivalent to a quartic DBI Galileon
Lagrangian, possessing non-linear higher derivative interactions, and hence
allowing for the Vainshtein effect. This Einstein Frame description
considerably simplifies the dynamical equations and highlights the role of the
different terms. The study of highly dense, non-relativistic environments
within this description unravels the existence of a disformal screening
mechanism, while the study of static vacuum configurations reveals the
existence of a Vainshtein radius, at which the asymptotic solution breaks down.
Disformal couplings to matter also allow the construction of Dark Energy
models, which behave differently than conformally coupled ones and introduce
new effects on the growth of Large Scale Structure over cosmological scales, on
which the scalar force is not screened. We consider a simple Disformally
Coupled Dark Matter model in detail, in which standard model particles follow
geodesics of the gravitational metric and only Dark Matter is affected by the
disformal scalar field. This particular model is not compatible with
observations in the linearly perturbed regime. Nonetheless, disformally coupled
theories offer enough freedom to construct realistic cosmological scenarios,
which can be distinguished from the standard model through characteristic
signatures.Comment: Discussion on the Vainshtein effect added. 25 pages, 6 figures, 2
tables. Accepted for publication in PR
An apodized-aperture x-ray detector design for improved image quality in mammography
X-ray imaging for early cancer detection, such as screening mammography, requires images with high signal-to-noise ratio (SNR) using low levels of radiation exposure. Conventional detectors consist of a matrix of sensor elements, producing images where each pixel corresponds to a single sensor element. This imposes a fundamental limitation on image contrast and SNR for imaging fine detail for a given exposure. The work presented here reconsiders x-ray image formation using a new x-ray detector design that synthesizes image pixels from a large number of very small sensor elements with the goal of optimizing contrast and SNR.
Our new detector design, called apodized-aperture pixel (AAP), makes use of recent technology developments to produce images from an “over-sampled” sensor signal while suppressing both signal and noise aliasing to improve the modulation transfer function (MTF) and detective quantum efficiency (DQE).
Signal and noise performance of the AAP approach is described theoretically using a cascaded-systems analysis. This approach preserves the MTF of the small sensor elements up to the image sampling cut-off frequency where the MTF is increased by up to 53%. Frequencies above the cut-off are suppressed, eliminating both signal and noise aliasing artifacts and corresponding to a high-frequency DQE increase by 2.5x. X-ray interactions in a scintillator introduce signal and noise correlations, including x-ray reabsorption and converter blur, resulting in reduced aliasing and decreased improvement in DQE. Best results with the AAP design were obtained using a high-resolution converter, such as selenium (Se), with little impact from reabsorption.
Implementation on a Se/CMOS micro-sensor prototype with 7.8\mum element size with image pixel size approximately 50\mum showed a flat DQE curve (ideal) up to 10cycles/mm. AAP images of resolution test patterns, mammography phantoms, and specimen imaging of micro-calcifications from biopsies showed the expected improvements in SNR and visibility of fine-detail.
It is concluded that synthesizing image pixels from small physical sensor elements can increase MTF and DQE, and eliminate aliasing artifacts, for a desired image pixel size. The resulting increase in SNR may benefit all forms of radiography, and in particular mammography, where accurate visualization of fine detail is important for early cancer detection
Density of States Scaling at the Semimetal to Metal Transition in Three Dimensional Topological Insulators
The quantum phase transition between the three dimensional Dirac semimetal
and the diffusive metal can be induced by increasing disorder. Taking the
system of disordered topological insulator as an important
example, we compute the single particle density of states by the kernel
polynomial method. We focus on three regions: the Dirac semimetal at the phase
boundary between two topologically distinct phases, the tricritical point of
the two topological insulator phases and the diffusive metal, and the diffusive
metal lying at strong disorder. The density of states obeys a novel single
parameter scaling, collapsing onto two branches of a universal scaling
function, which correspond to the Dirac semimetal and the diffusive metal. The
diverging length scale critical exponent and the dynamical critical
exponent are estimated, and found to differ significantly from those for
the conventional Anderson transition. Critical behavior of experimentally
observable quantities near and at the tricritical point is also discussed.Comment: 5 pages, 5 figures, to appear in PR
Shot Noise in Ballistic Graphene
We have investigated shot noise in graphene field effect devices in the
temperature range of 4.2--30 K at low frequency ( = 600--850 MHz). We find
that for our graphene samples with large width over length ratio , the
Fano factor reaches a maximum 1/3 at the
Dirac point and that it decreases strongly with increasing charge density. For
smaller , the Fano factor at Dirac point is significantly lower. Our
results are in good agreement with the theory describing that transport at the
Dirac point in clean graphene arises from evanescent electronic states.Comment: Phys. Rev. Lett. 100, 196802 (2008
Shot noise and conductivity at high bias in bilayer graphene: Signatures of electron-optical phonon coupling
We have studied electronic conductivity and shot noise of bilayer graphene
(BLG) sheets at high bias voltages and low bath temperature K. As a
function of bias, we find initially an increase of the differential
conductivity, which we attribute to self-heating. At higher bias, the
conductivity saturates and even decreases due to backscattering from optical
phonons. The electron-phonon interactions are also responsible for the decay of
the Fano factor at bias voltages V. The high bias electronic
temperature has been calculated from shot noise measurements, and it goes up to
K at V. Using the theoretical temperature dependence of BLG
conductivity, we extract an effective electron-optical phonon scattering time
. In a 230 nm long BLG sample of mobility
cmVs, we find that decreases with increasing
voltage and is close to the charged impurity scattering time fs
at V.Comment: 7 pages, 7 figures. Extended version of the high bias part of version
1. The low bias part is discussed in arXiv:1102.065
- …