669 research outputs found
Tandem mass spectrometry for the structural determination of backbone-modified peptides
AbstractA variety of backbone-modified peptides were desorbed by fast atom bombardment and collisionally activated. These peptide modifications involve the replacement of a normal [CONH] peptide linkage with such groups as thiomethylene ether (CH2S), thioamide (CSNH), methyleneamine (CH2NH), and thiomethylene sulfoxide (CH2SO) moieties. Modified linear peptides decompose to give fragmentations characteristic of the modifications as well as typical peptide bond fragments. The presence of a replacement group in cyclic peptides can induce new fragmentations. The presence of other functional groups, such as exocyclic N-terminal residue, however, can dominate the observed fragmentations. Upon collisional activation, unmodified linear peptides fragment to give N-terminal ions as the most abundant daughter ions. In comparison, ψ[CH2NH] and ψ[CH2S] modified linear peptides decompose to give prominent C-terminal sequence ions. The ψ[CH2SO] modified linear peptides, however, fragment in both N- and C-terminal ions of high relative abudance. Depending on the modification, daughter ions or internal fragment ions are observed that are characteristic of the amide bond replacement. Useful structural information can therefore be obtained
The CHARA Array resolves the long-period Wolf-Rayet binaries WR 137 and WR 138
We report on interferometric observations with the CHARA Array of two
classical Wolf-Rayet stars in suspected binary systems, namely WR 137 and WR
138. In both cases, we resolve the component stars to be separated by a few
milliarcseconds. The data were collected in the H-band, and provide a measure
of the fractional flux for both stars in each system. We find that the WR star
is the dominant H-band light source in both systems (; ), which is confirmed through both
comparisons with estimated fundamental parameters for WR stars and O dwarfs, as
well as through spectral modeling of each system. Our spectral modeling also
provides fundamental parameters for the stars and winds in these systems. The
results on WR 138 provide evidence that it is a binary system which may have
gone through a previous mass-transfer episode to create the WR star. The
separation and position of the stars in the WR 137 system together with
previous results from the IOTA interferometer provides evidence that the binary
is seen nearly edge-on. The possible edge-on orbit of WR 137 aligns well with
the dust production site imaged by the Hubble Space Telescope during a previous
periastron passage, showing that the dust production may be concentrated in the
orbital plane.Comment: 11 pages, 4 tables, 7 figures, accepted to MNRA
Transit Timing Observations from Kepler. VIII Catalog of Transit Timing Measurements of the First Twelve Quarters
Following Ford et al. (2011, 2012) and Steffen et al. (2012) we derived the
transit timing of 1960 Kepler KOIs using the pre-search data conditioning (PDC)
light curves of the first twelve quarters of the Kepler data. For 721 KOIs with
large enough SNRs, we obtained also the duration and depth of each transit. The
results are presented as a catalog for the community to use. We derived a few
statistics of our results that could be used to indicate significant
variations. Including systems found by previous works, we have found 130 KOIs
that showed highly significant TTVs, and 13 that had short-period TTV
modulations with small amplitudes. We consider two effects that could cause
apparent periodic TTV - the finite sampling of the observations and the
interference with the stellar activity, stellar spots in particular. We briefly
discuss some statistical aspects of our detected TTVs. We show that the TTV
period is correlated with the orbital period of the planet and with the TTV
amplitude.Comment: Accepted for publication to ApJ. 57 pages, 23 Figures. Machine
readable catalogs are available at ftp://wise-ftp.tau.ac.il/pub/tauttv/TT
Optimal Path and Minimal Spanning Trees in Random Weighted Networks
We review results on the scaling of the optimal path length in random
networks with weighted links or nodes. In strong disorder we find that the
length of the optimal path increases dramatically compared to the known small
world result for the minimum distance. For Erd\H{o}s-R\'enyi (ER) and scale
free networks (SF), with parameter (), we find that the
small-world nature is destroyed. We also find numerically that for weak
disorder the length of the optimal path scales logaritmically with the size of
the networks studied. We also review the transition between the strong and weak
disorder regimes in the scaling properties of the length of the optimal path
for ER and SF networks and for a general distribution of weights, and suggest
that for any distribution of weigths, the distribution of optimal path lengths
has a universal form which is controlled by the scaling parameter
where plays the role of the disorder strength, and
is the length of the optimal path in strong disorder. The
relation for is derived analytically and supported by numerical
simulations. We then study the minimum spanning tree (MST) and show that it is
composed of percolation clusters, which we regard as "super-nodes", connected
by a scale-free tree. We furthermore show that the MST can be partitioned into
two distinct components. One component the {\it superhighways}, for which the
nodes with high centrality dominate, corresponds to the largest cluster at the
percolation threshold which is a subset of the MST. In the other component,
{\it roads}, low centrality nodes dominate. We demonstrate the significance
identifying the superhighways by showing that one can improve significantly the
global transport by improving a very small fraction of the network.Comment: review, accepted at IJB
Complete IRAC mapping of the CFHTLS-DEEP, MUSYC AND NMBS-II FIELDS
The IRAC mapping of the NMBS-II fields program is an imaging survey at 3.6
and 4.5m with the Spitzer Infrared Array Camera (IRAC). The observations
cover three Canada-France-Hawaii Telescope Legacy Survey Deep (CFHTLS-D)
fields, including one also imaged by AEGIS, and two MUSYC fields. These are
then combined with archival data from all previous programs into deep mosaics.
The resulting imaging covers a combined area of about 3 , with at least
2 hr integration time for each field. In this work, we present our data
reduction techniques and document the resulting coverage maps at 3.6 and
4.5m. All of the images are W-registered to the reference image, which is
either the z-band stack image of the 25\% best seeing images from the CFHTLS-D
for CFHTLS-D1, CFHTLS-D3, and CFHTLS-D4, or the K-band images obtained at the
Blanco 4-m telescope at CTIO for MUSYC1030 and MUSYC1255. We make all images
and coverage maps described herein publicly available via the Spitzer Science
Center.Comment: Accepted in PASP; released IRAC mosaics available upon publication of
the pape
Secure mass measurements from transit timing: 10 Kepler exoplanets between 3 and 8 M_⊕ with diverse densities and incident fluxes
We infer dynamical masses in eight multiplanet systems using transit times measured from Kepler's complete data set, including short-cadence data where available. Of the 18 dynamical masses that we infer, 10 pass multiple tests for robustness. These are in systems Kepler-26 (KOI-250), Kepler-29 (KOI-738), Kepler-60 (KOI-2086), Kepler-105 (KOI-115), and Kepler-307 (KOI-1576). Kepler-105 c has a radius of 1.3 R_⊕ and a density consistent with an Earth-like composition. Strong transit timing variation (TTV) signals were detected from additional planets, but their inferred masses were sensitive to outliers or consistent solutions could not be found with independently measured transit times, including planets orbiting Kepler-49 (KOI-248), Kepler-57 (KOI-1270), Kepler-105 (KOI-115), and Kepler-177 (KOI-523). Nonetheless, strong upper limits on the mass of Kepler-177 c imply an extremely low density of ~0.1 g cm^(−3). In most cases, individual orbital eccentricities were poorly constrained owing to degeneracies in TTV inversion. For five planet pairs in our sample, strong secular interactions imply a moderate to high likelihood of apsidal alignment over a wide range of possible eccentricities. We also find solutions for the three planets known to orbit Kepler-60 in a Laplace-like resonance chain. However, nonlibrating solutions also match the transit timing data. For six systems, we calculate more precise stellar parameters than previously known, enabling useful constraints on planetary densities where we have secure mass measurements. Placing these exoplanets on the mass–radius diagram, we find that a wide range of densities is observed among sub-Neptune-mass planets and that the range in observed densities is anticorrelated with incident flux
Structural Properties of Self-Attracting Walks
Self-attracting walks (SATW) with attractive interaction u > 0 display a
swelling-collapse transition at a critical u_{\mathrm{c}} for dimensions d >=
2, analogous to the \Theta transition of polymers. We are interested in the
structure of the clusters generated by SATW below u_{\mathrm{c}} (swollen
walk), above u_{\mathrm{c}} (collapsed walk), and at u_{\mathrm{c}}, which can
be characterized by the fractal dimensions of the clusters d_{\mathrm{f}} and
their interface d_{\mathrm{I}}. Using scaling arguments and Monte Carlo
simulations, we find that for u<u_{\mathrm{c}}, the structures are in the
universality class of clusters generated by simple random walks. For
u>u_{\mathrm{c}}, the clusters are compact, i.e. d_{\mathrm{f}}=d and
d_{\mathrm{I}}=d-1. At u_{\mathrm{c}}, the SATW is in a new universality class.
The clusters are compact in both d=2 and d=3, but their interface is fractal:
d_{\mathrm{I}}=1.50\pm0.01 and 2.73\pm0.03 in d=2 and d=3, respectively. In
d=1, where the walk is collapsed for all u and no swelling-collapse transition
exists, we derive analytical expressions for the average number of visited
sites and the mean time to visit S sites.Comment: 15 pages, 8 postscript figures, submitted to Phys. Rev.
- …