406 research outputs found

    Charge regulation: a generalized boundary condition?

    Full text link
    The three most commonly-used boundary conditions for charged colloidal systems are constant charge (insulator), constant potential (conducting electrode) and charge regulation (ionizable groups at the surface). It is usually believed that the charge regulation is a generalized boundary condition that reduces in some specific limits to either constant charge or constant potential boundary conditions. By computing the disjoining pressure between two symmetric planes for these three boundary conditions, both numerically (for all inter-plate separations) and analytically (for small inter-plate separations), we show that this is not, in general, the case. In fact, the limit of charge regulation is a separate boundary condition, yielding a disjoining pressure with a different characteristic separation-scaling. Our findings are supported by several examples demonstrating that the disjoining pressure at small separations for the charge regulation boundary-condition depends on the details of the dissociation/association process.Comment: 6 pages, 3 figure

    Surface Tension of Electrolyte Solutions: A Self-consistent Theory

    Full text link
    We study the surface tension of electrolyte solutions at the air/water and oil/water interfaces. Employing field-theoretical methods and considering short-range interactions of anions with the surface, we expand the Helmholtz free energy to first-order in a loop expansion and calculate the excess surface tension. Our approach is self-consistent and yields an analytical prediction that reunites the Onsager-Samaras pioneering result (which does not agree with experimental data), with the ionic specificity of the Hofmeister series. We obtain analytically the surface-tension dependence on the ionic strength, ionic size and ion-surface interaction, and show consequently that the Onsager-Samaras result is consistent with the one-loop correction beyond the mean-field result. Our theory fits well a wide range of concentrations for different salts using one fit parameter, reproducing the reverse Hofmeister series for anions at the air/water and oil/water interfaces.10.1029Comment: 5 pages, 2 figure

    Reflowing digital ink annotations

    Get PDF

    Constructing families of moderate-rank elliptic curves over number fields

    Full text link
    We generalize a construction of families of moderate rank elliptic curves over Q\mathbb{Q} to number fields K/QK/\mathbb{Q}. The construction, originally due to Steven J. Miller, \'Alvaro Lozano-Robledo and Scott Arms, invokes a theorem of Rosen and Silverman to show that computing the rank of these curves can be done by controlling the average of the traces of Frobenius, the construction for number fields proceeds in essentially the same way. One novelty of this method is that we can construct families of moderate rank without having to explicitly determine points and calculating determinants of height matrices.Comment: Version 1.0, 4 pages, sequel to arXiv:math/040657

    Ionic profiles close to dielectric discontinuities: Specific ion-surface interactions

    Full text link
    We study, by incorporating short-range ion-surface interactions, ionic profiles of electrolyte solutions close to a non-charged interface between two dielectric media. In order to account for important correlation effects close to the interface, the ionic profiles are calculated beyond mean-field theory, using the loop expansion of the free energy. We show how it is possible to overcome the well-known deficiency of the regular loop expansion close to the dielectric jump, and treat the non-linear boundary conditions within the framework of field theory. The ionic profiles are obtained analytically to one-loop order in the free energy, and their dependence on different ion-surface interactions is investigated. The Gibbs adsorption isotherm, as well as the ionic profiles are used to calculate the surface tension, in agreement with the reverse Hofmeister series. Consequently, from the experimentally-measured surface tension, one can extract a single adhesivity parameter, which can be used within our model to quantitatively predict hard to measure ionic profiles.Comment: 14 pages, 6 figure
    • …
    corecore