847 research outputs found
An outburst scenario for the X-ray spectral variability in 3C 111
We present a combined Suzaku and Swift BAT broad-band E=0.6-200keV spectral
analysis of three 3C 111 observations obtained in 2010. The data are well
described with an absorbed power-law continuum and a weak (R~0.2) cold
reflection component from distant material. We constrain the continuum cutoff
at E_c~150-200keV, which is in accordance with X-ray Comptonization corona
models and supports claims that the jet emission is only dominant at much
higher energies. Fe XXVI Ly\alpha emission and absorption lines are also
present in the first and second observations, respectively. The modelling and
interpretation of the emission line is complex and we explore three
possibilities. If originating from ionized disc reflection, this should be
emitted at r_in> 50r_g or, in the lamp-post configuration, the illuminating
source should be at a height of h> 30r_g over the black hole. Alternatively,
the line could be modeled with a hot collisionally ionized plasma with
temperature kT = 22.0^{+6.1}_{-3.2} keV or a photo-ionized plasma with
log\xi=4.52^{+0.10}_{-0.16} erg s^{-1} cm and column density N_H > 3x10^23
cm^{-2}. However, the first and second scenarios are less favored on
statistical and physical grounds, respectively. The blue-shifted absorption
line in the second observation can be modelled as an ultra-fast outflow (UFO)
with ionization parameter log\xi=4.47^{+0.76}_{-0.04} erg s^{-1} cm, column
density N_H=(5.3^{+1.8}_{-1.3})x 10^{22} cm^{-2} and outflow velocity v_out =
0.104+/-0.006 c. Interestingly, the parameters of the photo-ionized emission
model remarkably match those of the absorbing UFO. We suggest an outburst
scenario in which an accretion disc wind, initially lying out of the line of
sight and observed in emission, then crosses our view to the source and it is
observed in absorption as a mildly-relativistic UFO.Comment: Accepted for publication in MNARS on July 1st 201
From radio-quiet to radio-silent: low luminosity Seyfert radio cores
A strong effort has been devoted to understand the physical origin of radio
emission from low-luminosity AGN (LLAGN), but a comprehensive picture is still
missing. We used high-resolution (1 arcsec), multi-frequency (1.5, 5.5, 9
and 14 GHz) NSF's Karl G. Jansky Very Large Array (VLA) observations to
characterise the state of the nuclear region of ten Seyfert nuclei, which are
the faintest members of a complete, distance-limited sample of 28 sources. With
the sensitivity and resolution guaranteed by the VLA-A configuration, we
measured radio emission for six sources (NGC3185, NGC3941, NGC4477, NGC4639,
NGC4698 and NGC4725), while for the remaining four (NGC0676, NGC1058, NGC2685
and NGC3486) we put upper limits at tens uJy/beam level, below the previous
0.12 mJy/beam level of Ho&Ulvestad (2001), corresponding to luminosities down
to L W/Hz at 1.5 GHz for the highest RMS observation. Two sources,
NGC4639 and NGC4698, exhibit spectral slopes compatible with inverted spectra
(0, ), hint for radio emission
from an optically-thick core, while NGC4477 exhibits a steep (+0.520.09)
slope. The detected sources are mainly compact on scales arcseconds,
predominantly unresolved, except NGC3185 and NGC3941, in which the resolved
radio emission could be associated to star-formation processes. A significant
X-ray - radio luminosities correlation is extended down to very low
luminosities, with slope consistent with inefficient accretion, expected at
such low Eddington ratios. Such sources will be one of the dominant Square
Kilometre Array (SKA) population, allowing a deeper understanding of the
physics underlying such faint AGN.Comment: accepted for publication on MNRAS (19 pages, 26 figures
Different realizations of tomographic principle in quantum state measurement
We establish a general principle for the tomographic approach to quantum
state reconstruction, till now based on a simple rotation transformation in the
phase space, which allows us to consider other types of transformations. Then,
we will present different realizations of the principle in specific examples.Comment: 17 pages, Latex file, no figures, accepted by J. of Mod. Op
Hard - X-rays selected Active Galactic Nuclei. I. A radio view at high-frequencies
A thorough study of radio emission in Active Galactic Nuclei (AGN) is of
fundamental importance to understand the physical mechanisms responsible for
the emission and the interplay between accretion and ejection processes. High
frequency radio observations can target the nuclear contribution of smaller
emitting regions and are less affected by absorption. We present JVLA 22 and 45
GHz observations of 16 nearby (0.003z0.3) hard - X-rays selected AGN
at the (sub)-kpc scale with tens uJy beam sensitivity. We detected 15/16
sources, with flux densities ranging from hundreds uJy beam to tens Jy
(specific luminosities from 10 to 10 at
22 GHz). All detected sources host a compact core, with 8 being core-dominated
at either frequencies, the others exhibiting also extended structures. Spectral
indices range from steep to flat/inverted. We interpret this evidence as either
due to a core+jet system (6/15), a core accompanied by surrounding star
formation (1/15), to a jet oriented close to the line of sight (3/15), to
emission from a corona or the base of a jet (1/15), although there might be
degeneracies between different processes. Four sources require more data to
shed light on their nature. We conclude that, at these frequencies, extended,
optically-thin components are present together with the flat-spectrum core. The
relation is roughly followed, indicating a possible
contribution to radio emission from a hot corona. A weakly significant
correlation between radio core (22 and 45 GHz) and X-rays luminosities is
discussed in the light of an accretion-ejection framework.Comment: Accepted for publication on MNRA
- …