1,023 research outputs found

    Microstructural characteristics of new type Îł-Îł` Co-9Al-9W cobalt-based superalloys in as-cast state

    Get PDF
    The paper presented deals primary with the structure characteristics of a new type of cobalt-based superalloys Co-9Al-9W type, casted via induction melting process with partially dosing of Common problems described in literature are focused on difficulties in obtaining uniform distribution of tungsten, particularly in interdendritic areas. That was the reason for the modified casting process to be applied. The method of tungsten dosing into liquid melts of Co and Al allows to obtain microstructure characterized by considerably decreased microsegregation. The material obtained was analyzed by standard methods such as light and scanning microscopy with analysis of chemical composition in micro-areas. Additionally, the detailed analysis of the sub-grain level was made by S/TEM on thin foils collected from equiaxed grains zone of the ingot

    How Much Variation in Land Surface Phenology can Climate Oscillation Modes Explain at the Scale of Mountain Pastures in Kyrgyzstan?

    Get PDF
    Climate oscillation modes can shape weather across the globe due to atmospheric teleconnections. We built on the findings of a recent study to assess whether the impacts of teleconnections are detectable and significant in the early season dynamics of highland pastures across five rayons in Kyrgyzstan. Specifically, since land surface phenology (LSP) has already shown to be influenced by snow cover seasonality and terrain, we investigated here how much more explanatory and predictive power information about climatic oscillation modes might add to explain variation in LSP. We focused on seasonal values of five climate oscillation indices that influence vegetation dynamics in Central Asia. We characterized the phenology in highland pastures with metrics derived from LSP modeling using Landsat NDVI time series together with MODIS land surface temperature (LST) data: Peak Height (PH), the maximum modeled NDVI and Thermal Time to Peak (TTP), the quantity of accumulated growing degree-days based on LST required to reach PH. Next, we calculated two metrics of snow cover seasonality from MODIS snow cover composites: last date of snow (LDoS), and the number of snow covered dates (SCD). For terrain features, we derived elevation, slope, and TRASP index as linearization of aspect. First, we used Spearman’s rank correlation to assess the geographical differentiation of land surface phenology metrics responses to environmental variables. PH showed weak correlations with TTP (positive in western but negative in eastern rayons), and moderate relationships with LDoS and SCD only in one northeastern rayon. Slope was weakly related to PH, while TRASP showed a consistent moderate negative correlation with PH. A significant but weak negative correlation was found between PH and SCAND JJA, and a significant weak positive correlation with MEI MAM. TTP showed consistently strong negative relationships with LDoS, SCD, and elevation. Very weak positive correlations with TTP were found for EAWR DJF, AMO DJF, and MEI DJF in western rayons only. Second, we used Partial Least Squares regression to investigate the role of oscillation modes altogether. PLS modelling of TTP showed that thermal time accumulation could be explained mostly by elevation and snow cover metrics, leading to reduced models explaining 55 to 70% of observed variation in TTP. Variable selection indicated that NAO JJA, AMO JJA and SCAND MAM had significant relationships with TTP, but their input of predictive power was neglible. PLS models were able to explain up to 29% of variability in PH. SCAND JJA and MEI MAM were shown to be significant predictors, but adding them into models did not influence modeling performance. We concluded the impacts of climate oscillation anomalies were not detectable or significant in mountain pastures using LSP metrics at fine spatial resolution. Rather, at a 30m resolution, the indirect effects of seasonal climatic oscillations are overridden by terrain influences (mostly elevation) and snow cover timing. Whether climate oscillation mode indices can provide some new and useful information about growing season conditions remains a provocative question, particularly in light of the multiple environmental challenges facing the agropastoralism livelihood in montane Central Asia

    Land Surface Phenology in the Highland Pastures of Montane Central Asia: Interactions with Snow Cover Seasonality and Terrain Characteristics

    Get PDF
    Many studies have shown that high elevation environments are among very sensitive to climatic changes and where impacts are exacerbated. Across Central Asia, which is especially vulnerable to climate change due to aridity, the ability of global climate projections to capture the complex dynamics of mountainous environments is particularly limited. Over montane Central Asia, agropastoralism constitutes a major portion of the rural economy. Extensive herbaceous vegetation forms the basis of rural economies in Kyrgyzstan. Here we focus on snow cover seasonality and the effects of terrain on phenology in highland pastures using remote sensing data for 2001–2017. First, we describe the thermal regime of growing season using MODerate Resolution Imaging Spectrometer (MODIS) land surface temperature (LST) data, analyzing the modulation by elevation, slope, and aspect. We then characterized the phenology in highland pastures with metrics derived from modeling the land surface phenology using Landsat normalized difference vegetation index (NDVI) time series together with MODIS LST data. Using rank correlations, we then analyzed the influence of four metrics of snow cover seasonality calculated from MODIS snow cover composites—first date of snow, late date of snow, duration of snow season, and the number of snow-covered dates (SCD)—on two key metrics of land surface phenology in the subsequent growing season, specifically, peak height (PH; the maximum modeled NDVI) and thermal time to peak (TTP; the amount of growing degree-days accumulated during modeled green-up phase). We evaluated the role of terrain features in shaping the relationships between snow cover metrics and land surface phenology metrics using exact multinomial tests of equivalence. Key findings include (1) a positive relationship between SCD and PH occurred in over 1664 km2 at p \u3c 0.01 and 5793 km2 at p \u3c 0.05, which account for\u3e8% of 68,881 km2 of the pasturelands analyzed in Kyrgyzstan; (2) more negative than positive correlations were found between snow cover onset and PH, and more positive correlations were observed between snowmelt timing and PH, indicating that a longer snow season can positively influence PH; (3) significant negative correlations between TTP and SCD appeared in 1840 km2 at p \u3c 0.01 and 6208 km2 at p \u3c 0.05, and a comparable but smaller area showed negative correlations between TTP and last date of snow (1538 km2 at p \u3c 0.01 and 5188 km2 at p \u3c 0.05), indicating that under changing climatic conditions toward earlier spring warming, decreased duration of snow cover may lead to lower pasture productivity, thereby threatening the sustainability of montane agropastoralism; and (4) terrain had a stronger influence on the timing of last date of snow cover than on the number of snow-covered dates, with slope being more important than aspect, and the strongest effect appearing from the interaction of aspect and steeper slopes. In this study, we characterized the snow-phenology interactions in highland pastures and revealed strong dependencies of pasture phenology on timing of snowmelt and the number of snow-covered dates

    The Thebesian valve and its significance for electrophysiologists

    Get PDF
    Background: Invasive cardiac procedures, such as arrhythmia ablation, cardiac resynchronisation therapy, percutaneous mitral annuloplasty and retrograde cardioplegia delivery require cannulation of the coronary sinus (CS). Detailed knowledge of the CS ostium region, including recognition of the presence of the Thebesian valve which sometimes covers the sinus, is a key to successfully carryout such procedures.Materials and methods: In the present study, 160 autopsied human hearts from both sexes were examined for the presence of the Thebesian valve. If identified, the histological structure of the valve was studied.Results: Five types of the CS valve were distinguished; all of them presented with a typical histological structure with the exception of the cord-like type, in which cells were similar to those of the conduction system of the heart.Conclusions: Proper identification of the CS valve and analysis of its size and histological features could have important implications for electrophysiologists

    Anatomy and clinical significance of the maxillary nerve: a literature review

    Get PDF
    Background: The aim of this paper was to summarise the anatomical knowledge on the subject of the maxillary nerve and its branches, and to show the clinical usefulness of such information in producing anaesthesia in the region of the maxilla. Materials and methods: A literature search was performed in Pubmed, Scopus, Web of Science and Google Scholar databases, including studies published up to June 2014, with no lower data limit. Results: The maxillary nerve (V2) is the middle sized branch of the trigeminal nerve — the largest of the cranial nerves. The V2 is a purely sensory nerve supplying the maxillary teeth and gingiva, the adjoining part of the cheek, hard and soft palate mucosa, pharynx, nose, dura mater, skin of temple, face, lower eyelid and conjunctiva, upper lip, labial glands, oral mucosa, mucosa of the maxillary sinus, as well as the mobile part of the nasal septum. The branches of the maxillary nerve can be divided into four groups depending on the place of origin i.e. in the cranium, in the sphenopalatine fossa, in the infraorbital canal, and on the face. Conclusions: This review summarises the data on the anatomy and variations of the maxillary nerve and its branches. A thorough understanding of the anatomy will allow for careful planning and execution of anaesthesiological and surgical procedures involving the maxillary nerve and its branches

    Endplate calcification and cervical intervertebral disc degeneration: the role of endplate marrow contact channel occlusion

    Get PDF
    Background: The aim of this study was to determine the fundamental relationships between cervical intervertebral disc (IVD) degeneration, endplate calcification, and the patency of endplate marrow contact channels (MCC). Materials and methods: Sixty cervical IVDs were excised from 30 human cadavers. After sectioning the specimens underwent micro computed tomography (microCT) — from all images the number, calibre, diameter and distribution of endplate openings were measured using ImageJ. Next, the specimens were scored for macroscopic degeneration (Thompson’s classification), and subsequently underwent histological analysis for both IVD and endplate degeneration (Boos’s classification) and calcification. Results: The study group comprised 30 female and 30 male IVDs (mean age ± SD: 51.4 ± 19.5). Specimen’s age, macroscopic and microscopic degeneration correlated negatively with the number of MCCs (r = –0.33–(–0.95); p < 0.0001), apart from the MCCs > 300 ÎŒm in diameter (r = 0.66–0.79; p < 0.0001). The negative relationship was strongest for the MCCs 10–50 ÎŒm in diameter. Conclusions: There is a strong negative correlation between the number of endplate MCCs, and both macroscopic and microscopic cervical IVD and endplate degeneration. This could further support the thesis that endplate calcification, through the occlusion of MCCs, leads to a fall in nutrient transport to the IVD, and subsequently causes its degeneration

    A Thioredoxin Domain-Containing Protein Interacts with Pepino mosaic virus Triple Gene Block Protein 1

    Get PDF
    Pepino mosaic virus (PepMV) is a mechanically-transmitted tomato pathogen of importance worldwide. Interactions between the PepMV coat protein and triple gene block protein (TGBp1) with the host heat shock cognate protein 70 and catalase 1 (CAT1), respectively, have been previously reported by our lab. In this study, a novel tomato interactor (SlTXND9) was shown to bind the PepMV TGBp1 in yeast-two-hybrid screening, in vitro pull-down and bimolecular ïŹ‚uorescent complementation (BiFC) assays. SlTXND9 possesses part of the conserved thioredoxin (TRX) active site sequence (W__PC vs. WCXPC), and TXND9 orthologues cluster within the TRX phylogenetic superfamilyclosesttophosducin-likeprotein-3. InPepMV-infectedandhealthyNicotianabenthamiana plants,NbTXND9mRNAlevelswerecomparable,andexpressionlevelsremainedstableinbothlocal and systemic leaves for 10 days post inoculation (dpi), as was also the case for catalase 1 (CAT1). To localize the TXND9 in plant cells, a polyclonal antiserum was produced. PuriïŹed α-SlTXND9 immunoglobulin (IgG) consistently detected a set of three protein bands in the range of 27–35 kDa, in the 1000 and 30,000 g pellets, and the soluble fraction of extracts of healthy and PepMV-infected N. benthamiana leaves, but not in the cell wall. These bands likely consist of the homologous protein NbTXND9 and its post-translationally modiïŹed derivatives. On electron microscopy, immuno-gold labellingofultrathinsectionsofPepMV-infectedN.benthamianaleavesusingα-SlTXND9IgGrevealed particle accumulation close to plasmodesmata, suggesting a role in virus movement. Taken together, this study highlights a novel tomato-PepMV protein interaction and provides data on its localization in planta. Currently, studies focusing on the biological function of this interaction during PepMV infection are in progress
    • 

    corecore