15 research outputs found

    Bilateral exudative retinal detachment in a patient with end-stage renal disease — a case report

    Get PDF
    End-stage renal disease (ESRD) is one of the most severe chronic kidney diseases occurring with a frequency of 0.1% in the general population. Patients with ESRD are more at risk of ocular complications, therefore cooperation between a nephrologist and an ophthalmologist is recommended. The most common complaints associated with the eye include the conjunctival chemosis, keratopathy, macular edema, optic neuropathy, elevated intraocular pressure and exudative retinal detachment. In this article, a case report of bilateral exudative retinal detachment in patients with the end-stage renal disease is presented

    Micropropagation and in vitro rooting of Robinia pseudoacacia L. recalcitrant genotypes

    No full text
    In forest production, there is an emerging tendency towards the planting of fast-growing trees as attractive, renewable energy sources. Hence, efforts were made to develop a method of micropropagation by organogenesis of seven clones of black locust (Robinia pseudoacacia L.) that are resistant to propagation by traditional vegetative methods, as well as one plus tree (no. 9755) at the age of 60, to see if the age of the mother plant is a limitation in the micropropagation of black locust trees. Overall results suggest that Murashige and Skoog medium supplemented with 30 g l−1 sucrose, 0.6 mg l−1 6-benzylaminopurine (BAP) and 0.1 mg l−1 naphthalene acetic acid (NAA) is better for the propagation of each genotype of R. pseudoacacia than Woody Plant Medium with the same growth regulators, and the age of the donor plant does not affect the organogenic potential. Recalcitrance to adventitious rooting from adventitious shoot formation is a major limitation for the clonal micropropagation of forest trees. Our results showed that although the roots were also formed spontaneously in the growth medium without growth hormones for the tested black locust clones, the application of auxin increased the total root length compared to that in the medium with active carbon and control. A significant effect of the additives of hormone and sucrose on the total root length was found. Increasing the sucrose concentration stimulated the induction of roots in each of the tested concentrations (5, 10, 15 or 20 g l−1). Additionally, the change in sugar dose in the rooting medium caused significant differences in total root length

    Micropropagation and in vitro rooting of Robinia pseudoacacia L. recalcitrant genotypes

    No full text
    In forest production, there is an emerging tendency towards the planting of fast-growing trees as attractive, renewable energy sources. Hence, efforts were made to develop a method of micropropagation by organogenesis of seven clones of black locust (Robinia pseudoacacia L.) that are resistant to propagation by traditional vegetative methods, as well as one plus tree (no. 9755) at the age of 60, to see if the age of the mother plant is a limitation in the micropropagation of black locust trees. Overall results suggest that Murashige and Skoog medium supplemented with 30 g l−1 sucrose, 0.6 mg l−1 6-benzylaminopurine (BAP) and 0.1 mg l−1 naphthalene acetic acid (NAA) is better for the propagation of each genotype of R. pseudoacacia than Woody Plant Medium with the same growth regulators, and the age of the donor plant does not affect the organogenic potential. Recalcitrance to adventitious rooting from adventitious shoot formation is a major limitation for the clonal micropropagation of forest trees. Our results showed that although the roots were also formed spontaneously in the growth medium without growth hormones for the tested black locust clones, the application of auxin increased the total root length compared to that in the medium with active carbon and control. A significant effect of the additives of hormone and sucrose on the total root length was found. Increasing the sucrose concentration stimulated the induction of roots in each of the tested concentrations (5, 10, 15 or 20 g l−1). Additionally, the change in sugar dose in the rooting medium caused significant differences in total root length

    Micropropagation and in vitro rooting of Robinia pseudoacacia L. recalcitrant genotypes

    No full text
    In forest production, there is an emerging tendency towards the planting of fast-growing trees as attractive, renewable energy sources. Hence, efforts were made to develop a method of micropropagation by organogenesis of seven clones of black locust (Robinia pseudoacacia L.) that are resistant to propagation by traditional vegetative methods, as well as one plus tree (no. 9755) at the age of 60, to see if the age of the mother plant is a limitation in the micropropagation of black locust trees. Overall results suggest that Murashige and Skoog medium supplemented with 30 g l−1 sucrose, 0.6 mg l−1 6-benzylaminopurine (BAP) and 0.1 mg l−1 naphthalene acetic acid (NAA) is better for the propagation of each genotype of R. pseudoacacia than Woody Plant Medium with the same growth regulators, and the age of the donor plant does not affect the organogenic potential. Recalcitrance to adventitious rooting from adventitious shoot formation is a major limitation for the clonal micropropagation of forest trees. Our results showed that although the roots were also formed spontaneously in the growth medium without growth hormones for the tested black locust clones, the application of auxin increased the total root length compared to that in the medium with active carbon and control. A significant effect of the additives of hormone and sucrose on the total root length was found. Increasing the sucrose concentration stimulated the induction of roots in each of the tested concentrations (5, 10, 15 or 20 g l−1). Additionally, the change in sugar dose in the rooting medium caused significant differences in total root length

    Effects of Water Deficit Stress on Growth Parameters of <i>Robinia pseudoacacia</i> L. Selected Clones under In Vitro Conditions

    No full text
    Rapid screening methods for drought-resistant genotypes are urgently needed in tree improvement programs in the face of current climate change. We used a plant tissue culture technique to assess the phenotypic response of three highly productive genotypes of Robinia pseudoacacia to water deficit induced by mannitol and sucrose in a range of water potentials from 0 MPa to −1.5 MPa in an eight-week experiment. Our study showed genotype-specific responses to induced drought stress, indicating the potential for tree improvement in productivity and stress tolerance. Considering that all plantlets were constantly supplied with carbon, from the medium during the drought-induced experiment, our results suggest that hydraulic failure rather than carbon starvation may be the main cause of drought-induced mortality. Furthermore, our results showed different metabolic pathways of sucrose depending on the concentration of sucrose in the medium and different responses to osmoticum (mannitol vs. sucrose) and its concentration among the clones tested. We believe, that for large-scale breeding programs wanting to select for drought-tolerant genotypes, the use of culture media containing 90 gL−1 mannitol or 90 gL−1 sucrose at an early selection stage should provide satisfactory screening results. However, lab-based screening should be supported by further field trials, preferably at multiple sites, to assess the long-term impact and phenotypic stability of the early selection strategies

    Productivity, Growth Patterns, and Cellulosic Pulp Properties of Hybrid Aspen Clones

    No full text
    Research Highlights: This research provides a firm basis for understanding the improved aspen hybrid performance that aims at facilitating optimal clone selection for industrial application. Background and Objectives: Rapid growth and wood properties make aspen (Populus tremula L.) suitable for the production of pulp and paper. We assessed the potential of tree improvement through hybridization to enhance aspen productivity in northern Poland, and investigated the effects of Populus tremula hybridization with Populus tremuloides Michaux and Populus alba L. on the growth and cellulosic pulp properties for papermaking purposes. Materials and Methods: A common garden trial was utilized that included 15 hybrid aspen clones of P. tremula &#215; P. tremuloides, four of P. tremula &#215; P. alba, and one, previously tested P. tremula clone. Clones of P. tremula, plus trees from wild populations, were used as a reference. Tree height and diameter at breast height (DBH) were measured after growing seasons four through seven. At seven years of age, the three clones representing all species combinations were harvested, and their cellulosic pulp properties and paper sheet characteristics were assessed. Results: The clones from wild populations exhibited the poorest growth. In contrast, the clone &#8216;W&#228; 13&#8242; (P. tremula &#215; P. tremuloides) demonstrated the highest DBH, height, volume production, and mean annual increment (MAI) (25.4 m3 ha&#8722;1 year&#8722;1). The MAI ratio calculated for interspecific crosses ranged from 1.35- to 1.42-fold, higher than that for the P. tremula. Chemical properties of pulp, fiber morphology, and the physical properties of paper sheets were more desirable for interspecific hybrid clones than those for the pure P. tremula clone. Conclusions: The results indicated that plantations of hybrid aspen may constitute an important additional source of wood for pulp and paper products in Poland. Our findings further suggested that the standard rotation of these trees may be reduced from 40 to 20 years, increasing overall biomass yield and enhancing atmospheric carbon sequestration

    Nonlinear Weather–Growth Relationships Suggest Disproportional Growth Changes of Norway Spruce in the Eastern Baltic Region

    No full text
    Norway spruce (Picea abies (L.) H. Karst.) is predicted to decrease its abundance in the Eastern Baltic region as a result of climatic changes, and this process is already explicit at the southern limit of species lowland distribution. Still, there are uncertainties about the growth potential of Norway spruce within the region due to the plasticity of local populations. In this regard, an assessment of regional weather–growth responses, assuming a nonlinearity of the ecological relationship, can aid in the clarification of uncertainties regarding growth. Nonlinear regional weather–growth relationships for Norway spruce were assessed based on tree-ring widths from 22 stands spreading from Southern Finland to Northern Germany using dendrochronological methods and a generalized additive mixed model. Temporal and spatial stationarity of local linear weather–growth relationships was evaluated. Considering the drought sensitivity of Norway spruce, meteorological variables related to the summer moisture regime were the main predictors of radial increment, though conditions in winter and spring had complementary effects. Generally, the linear weather–growth relationships were spatially and temporary nonstationary, with some exceptions in Poland and Northern Germany. Explicit local specifics in the linear weather–growth relationships, which are common in the marginal parts of species’ distribution, were observed in Estonia, Latvia, and Poland. The estimated regional weather–growth relationships were mostly nonlinear, implying disproportional responses to climatic changes, particularly to intensifying drought conditions across the studied climatic gradient. Still, the responses to winter temperature suggested that warming might contribute to growth. The estimated linear and nonlinear growth responses indicate strict limitation by drought conditions, implying reductions of increment due to climatic changes southward from Latvia, suggesting the necessity for proactive management. Nevertheless, in the northern part of the analyzed region, the projected climatic changes appear favorable for growth of Norway spruce in the near future
    corecore