5 research outputs found

    CircAMOTL1 RNA and AMOTL1 Protein: Complex Functions of <i>AMOTL1</i> Gene Products

    No full text
    The complexity of the cellular proteome facilitates the control of a wide range of cellular processes. Non-coding RNAs, including microRNAs and long non-coding RNAs, greatly contribute to the repertoire of tools used by cells to orchestrate various functions. Circular RNAs (circRNAs) constitute a specific class of non-coding RNAs that have recently emerged as a widely generated class of molecules produced from many eukaryotic genes that play essential roles in regulating cellular processes in health and disease. This review summarizes current knowledge about circRNAs and focuses on the functions of AMOTL1 circRNAs and AMOTL1 protein. Both products from the AMOTL1 gene have well-known functions in physiology, cancer, and other disorders. Using AMOTL1 as an example, we illustrate how focusing on both circRNAs and proteins produced from the same gene contributes to a better understanding of gene functions

    The Structure and Mechanical Properties of the Surface Layer of Polypropylene Polymers with Talc Additions

    No full text
    In the presented work the influence of different 3MgO&middot;4SiO2&middot;H2O (talc) contents in polypropylene samples on the structure, hardness, elasticity, and friction of the surface layer was investigated. The talc content ranged from 0 to 25 wt.%, and all the samples were obtained in the same conditions by the injection molding process. The analysis of the microstructure was performed by X-ray diffraction. Changes in the hardness and elasticity were determined for three different depths (300, 800, and 4000 nm) using an ultra nano tester. For the purpose of the examination of the friction properties of the obtained compounds, a nano-scratch tester was applied. Increasing the talc content caused growth in the indentation modulus and hardness values. Simultaneously, an effect of decreasing hardness and elastic modulus with increasing indentation depth was observed. The smallest effect size was observed for 25 wt.% talc content, which might suggest that talc addition increased the homogeneity of the observed composites. Scratch tests showed increasing scratch resistance along with increasing talc content for both constant and progressive loads. The growth in talc concentration led to a decrease in the degree of the polypropylene (PP) crystallinity of the surface layer. The exfoliation process occurred in PP composites

    Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice.

    No full text
    The angiomotin (Amot)-Yes-associated protein 1 (Yap1) complex plays a major role in regulating the inhibition of cell contact, cellular polarity, and cell growth in many cell types. However, the function of Amot and the Hippo pathway transcription coactivator Yap1 in the central nervous system remains unclear. We found that Amot is a critical mediator of dendritic morphogenesis in cultured hippocampal cells and Purkinje cells in the brain. Amot function in developing neurons depends on interactions with Yap1, which is also indispensable for dendrite growth and arborization in vitro. The conditional deletion of Amot and Yap1 in neurons led to a decrease in the complexity of Purkinje cell dendritic trees, abnormal cerebellar morphology, and impairments in motor coordination. Our results indicate that the function of Amot and Yap1 in dendrite growth does not rely on interactions with TEA domain (TEAD) transcription factors or the expression of Hippo pathway-dependent genes. Instead, Amot and Yap1 regulate dendrite development by affecting the phosphorylation of S6 kinase and its target S6 ribosomal protein
    corecore