23 research outputs found

    1,N 6 -α-hydroxypropanoadenine, the acrolein adduct to adenine, is a substrate for AlkB dioxygenase

    Get PDF
    1,N6-α-hydroxypropanoadenine (HPA) is an exocyclic DNA adduct of acrolein – an environmental pollutant and endocellular oxidative stress product. Escherichia coli AlkB dioxygenase belongs to the superfamily of α-ketoglutarate (αKG)- and iron-dependent dioxygenases which remove alkyl lesions from bases via an oxidative mechanism, thereby restoring native DNA structure. Here, we provide in vivo and in vitro evidence that HPA is mutagenic and is effectively repaired by AlkB dioxygenase. HPA generated in plasmid DNA caused A → C and A → T transversions and, less frequently, A → G transitions. The lesion was efficiently repaired by purified AlkB protein; the optimal pH, Fe(II), and αKG concentrations for this reaction were determined. In vitro kinetic data show that the protonated form of HPA is preferentially repaired by AlkB, albeit the reaction is stereoselective. Moreover, the number of reaction cycles carried out by an AlkB molecule remains limited. Molecular modeling of the T(HPA)T/AlkB complex demonstrated that the R stereoisomer in the equatorial conformation of the HPA hydroxyl group is strongly preferred, while the S stereoisomer seems to be susceptible to AlkB-directed oxidative hydroxylation only when HPA adopts the syn conformation around the glycosidic bond. In addition to the biochemical activity assays, substrate binding to the protein was monitored by differential scanning fluorimetry allowing identification of the active protein form, with cofactor and cosubstrate bound, and monitoring of substrate binding. In contrast FTO, a human AlkB homolog, failed to bind an ssDNA trimer carrying HPA

    Selected ALKBH dioxygenases are overexpressed in salivary gland tumours.

    Get PDF
    Salivary gland tumours (SGTs) are a heterogeneous group of benign tumours of various origins and pathologies, showing a number of DNA modifications. Previously, in malignant head and neck cancer (HNSCC), we found overexpression of ALKBH proteins, the homologs of Escherichia coli AlkB 2-oxoglutarate and Fe(II) dependent dioxygenase. Moreover, we proved the connection of some of these dioxygenases with cancer development. Here, we studied the expression of five of these ALKBH dioxygenases: 1, 3, 4, 5, and FTO in benign SGTs. Using Western blot analysis, we found overexpression of three proteins: ALKBH1, 4, and FTO in SGT as compared to the surrounding, unaffected tissue. ALKBH4 was overexpressed in 76% of patient samples, whereas ALKBH1 and FTO in 65% of the samples. These results differ from those obtained in HNSCC, where FTO overexpression has been observed in 90% of patient samples. We also investigated the relationships between ALKBHs’ expression levels in normal and SGT tissues and identified two correlated pairs: ALKBH1-ALKBH3 and ALKBH1-ALKBH5. Additionally, in tumour tissue ALKBHs: ALKBH1, ALKBH3, ALKBH4, and ALKBH5 levels were correlated with each other. Together, these findings show that the ALKBH proteins exhibit pro cancerogenic action in SGT, even though the levels ALKBHs are generally lower in benign SGT than in malignant HNSCC. We suggest that the overexpression of the ALKBHs, especially FTO, may be used as a cancer marker and for its grading

    Structure and Function of Enterocyte in Intrauterine Growth Retarded Pig Neonates

    Get PDF
    The intestine of intrauterine growth retarded (IUGR) neonates showed different morphology compared to neonates born with normal body weight (NBW). The aim of the present study was to investigate the ultrastructure and proteomic profile of the gut epithelium in IUGR pig neonates with special attention to the digestive and absorptive function. Intestine tissue samples were investigated in 7-day-old IUGR and NBW littermate piglets using histometry, immunofluorescence, scanning electron microscopy (SEM), and mass spectrometry analysis. IUGR piglets have shown reduced mucosa and muscularis thickness and an enhanced number of foetal type enterocytes (FTE). SEM studies have shown the lack of the characteristic large-size vacuole in IUGR’s enterocytes. Delayed removal of FTE in IUGR neonates was probably due to the inhibited apoptosis in the apical part of villi and increased apoptosis and reduced mitosis in the crypt region. In the expression of proteins in the intestinal mucosa such as hexokinase I, histones, and prelamin A/C, carbamoyl phosphate was reduced in IUGR neonates. Finally, IUGR intestines showed higher expression of HSPA9 and HSPA5 as apoptosis markers. The data indicate modifications of gut mucosa in IUGRs that may result in slower gut mucosa maturation and reduced utilisation of nutrient as compared to NBW pig neonates

    Evaluation of Anti-cancer Activity of Stilbene and Methoxydibenzo[b,f] oxepin Derivatives

    Get PDF
    Background: Stilbenes, 1,2-diphenylethen derivatives, including resveratrol and combretastatins, show anticancer features especially against tumor angiogenesis. Fosbretabulin, CA-4, in combination with carboplatin, is in the last stages of clinical tests as an inhibitor of thyroid cancer. The mode of action of these compounds involves suppression of angiogenesis through interfering with tubulin (de)polymerization. Objective: We have previously synthesized five E-2-hydroxystilbenes and seven dibenzo[b,f]oxepins in Z configuration, with methyl or nitro groups at varied positions. The aim of the present work was to evaluate the anticancer activity and molecular mechanism(s) of action of these compounds. Results: Two healthy, EUFA30 and HEK293, and two cancerous, HeLa and U87, cell lines were treated with four newly synthetized stilbenes and seven oxepins. Two of these compounds, JJR5 and JJR6, showed the strongest cytotoxic effect against cancerous cells tested and these two were selected for further investigations. They induced apoptosis with sub-G1 or S cell cycle arrest and PARP cleavage, with no visible activation of caspases 3 and 7. Proteomic differential analysis of stilbene-treated cells led to the identification of proteins involved almost exclusively in cell cycle management, apoptosis, DNA repair, and stress response, e. g. oxidative stress. Conclusions: Among newly synthesized stilbene derivatives we selected two as potent anticancer compounds triggering late apoptosis/necrosis in cancerous cells through sub-G1 phase cell cycle arrest. They changed cyclin expression, induced DNA repair mechanisms, enzymes involved in apoptosis, and oxidative stress response. Compounds JJR5 and JJR6 can be a base for structure modification(s) to obtain even more active derivatives

    The stilbene and dibenzo[b,f]oxepine derivatives as anticancer compounds

    Get PDF
    In the present study, the synthesis and cytotoxic effect of six stilbenes and three oxepine derivatives against twocancerous–HeLa and U87, and two normal–EUFA30 and HEK293 cell lines has been reported. The results ofcytotoxic assay andflow cytometry analysis revealed that compounds 9-nitrobenzo[b]naphtho[1,2-f]oxepine(4), (E)-3,3′,4,4′,5,5′-hexamethoxystilbene (6) and 4-hydroxy-2′,4′-dinitrostilbene (8) were the most active andtheir interaction with tubulin (crystal structure from PDB) has been analyzed by computer molecular modeling.Molecular docking of these compounds on colchicine binding site of the tubulin indicates the interaction of (4),(6) and (8) with tubulin. The compound (4) could interact stronger with tubulin, relative to colchicine, however,with no selectivity of action against cancer and normal cells. Conversely, compounds (6) and (8) interact moreweakly with tubulin, relative to colchicine but they act more selectively towards cancerous versus normal celllines. Obtained results proved that the compounds that are the most active against cancerous cells operatethrough tubulin binding

    URINARY PROTEOMIC MARKERS OF IGA NEPHROPATHY, LUPUS NEPHRITIS AND MEMBRANOUS NEPHROPATHY

    Get PDF
    INTRODUCTION: Chronic kidney disease (CKD) is a worldwide public health problem, related to increased morbidity and mortality. Glomerulopathies represent major causes of CKD and require complicated diagnostics. Standard of care includes kidney biopsy in order to confirm the type of nephropathy. However, biopsy brings specific risks. Therefore, non-invasive diagnostic and prognostic methods are sought. Urinary proteomics emerged as safe and promising tool, but still requires development and improvements. Our previous studies which are part of European Patent Application from 10th June 2016 (WO/2017/212463), identified urinary markers of IgA nephropathy. They included among others: alpha-1B-glycoprotein (A1BG), alpha-l-acid glycoprotein 1 (ORM-1), ferritin light chain (FTL) and serotransferrin (TF). The aim of this study was to evaluate them in comparison to patients with glomerulopathies of different etiologies, such as lupus nephritis (LN) and membranous nephropathy (MN). METHODS: This proteomic study included patients with CKD (41 IgAN, 33 LN, 26 MN, 6 with erytrocyturia of unknown etiology) and 19 healthy controls. Urine samples were obtained from a midstream of the: first-morning (FM) and second- or third-morning (SPOT) sample. The SPOT samples were processed up to 2 h and FM samples up to 4 h after collection, by agitating and gently inverting 4-6 times, portioned into 2-ml aliquots and stored at -80°C for further measurements. Western Blotting was used for analysis of the SPOT and FM samples, ELISA and mass spectrometry for SPOT urine only. The results were related to demographic data, standard laboratory tests and GFR estimated with use of Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. RESULTS: The urinary concentrations of A1BG, ORM-1, FTL and TF were found to be higher in CKD patients than in healthy controls. Moreover, these proteins varied depending on the disease. According to ELISA measurements, patients with IgAN, erytrocyturia and LN had significantly more A1BG and ORM-1 (p < 0.05), whereas TF was more elevated in LN and MN individuals comparing to healthy controls. The western blot analysis revealed significantly elevated level of A1BG, ORM-1 and FTL in IgAN, LN and MN, comparing to healthy control. Additionally, it revealed fragmentation of A1BG in several patients and the bottom range bands tended to be most prominently elevated in IgAN patients. Mass spectrometry confirmed differences between the diseases according to the specific amino acids fragments of each tested protein. Figure 1. Western blot scans for urinary A1BG, ORM-1 and FTL in CKD patients (2-4) and healthy controls (1). CONCLUSIONS: The urinary concentrations of A1BG, ORM-1, FTL and TF are elevated in CKD patients and vary depending on the type of nephropathy. This observation suggests their differential roles in the pathophysiology of the given diseases, and we believe their evaluation may help distinguishing between nephropathies. Further studies are desired to establish the role of these urinary proteins in non-invasive disease differentiation

    ALKBH overexpression in head and neck cancer: potential target for novel anticancer therapy

    Get PDF
    The nine identified human homologues of E. coli AlkB 2-oxoglutarate (2OG) and Fe(II)-dependent dioxygenase, ALKBH1-8 and FTO, display different substrate specificities and diverse biological functions. Here we discovered the combined overexpression of members of the ALKBH family in head and neck squamous cell carcinomas (HNSCC). We found direct correlation of ALKBH3 and FTO expression with primary HNSCC tumor size. We observed unidentified thus far cytoplasmic localization of ALKBH2 and 5 in HNSCC, suggesting abnormal role(s) of ALKBH proteins in cancer. Further, high expression of ALKBHs was observed not only in HNSCC, but also in several cancerous cell lines and silencing ALKBH expression in HeLa cancer cells resulted in dramatically decreased survival. considering the discovered impact of high expression of ALKBH proteins on HNSCC development, we screened for ALKBH blockers among newly synthetized anthraquinone derivatives and demonstrated their potential to support standard anticancer therapy

    New inhibitors of ALKBH dioxygenases overexpressed in neck and head cancer

    Get PDF
    AlkB protein from E. coli (EcAlkB) is a profoundly studied member of 2-oxoglutarate and Fe(II) – dependent dioxygenase superfamily that removes alkyl lesions from DNA bases via oxidative demethylation restoring native bases in DNA. In human cells, there are nine EcAlkB homologs, ALKBH1-8 and FTO. These dioxygenases, repair alkylation lesions to DNA and RNA but also show other biological functions. Cancerous tissues develop greater efficiency of DNA repair systems in comparison to healthy ones. Overexpression of DNA repair proteins in tumor leads to the removal of DNA lesions before they become toxic to cancer cell, in this way assuring tumor welfare and creating major mechanism of resistance to anticancer therapy. Our main approach was to determine the levels of expression of particular ALKBHs in cancer tissues by Western-blot in head and neck cancer tissues. We have demonstrated that dioxygenases ALKBH 1, 3, 4, 5, and FTO are highly expressed in these tumors. Statistical analysis allowed to create protein expression tree of ALKBHs tested. We have found that FTO and ALKBH5, and ALKBH1 and ALKBH3 show similar expression patterns in healthy and cancerous tissues. To answer the question whether ALKBHs under study form any oligomers, we performed size exclusion chromatography and observed monomeric forms of ALKBH3, 4 while ALKBH1, 5, and FTO formed protein complexes. Natural substances, rhein and emodin, show anti-cancer, anti-inflammatory, and anti-microbial activities. Rhein inhibits activity of EcAlkB, ALKBH2, ALKBH3, and FTO. We synthesized and investigated new rhein and emodin derivatives as a potential inhibitors of ALKBHs and found that chloridoemodins in the form of mono- and di-chlorides are the most active inhibitors of ALKBHs among compounds tested. Moreover, they were more selective against cancerous than healthy cells and seem to be a promising anthraquinones in anti-cancer therapy.Funding: Pol/Nor/196258/59/2013

    Anticancer agents found in environment affect Daphnia at population, individual and molecular levels

    Get PDF
    Pharmaceuticals are used in medical treatment on a large scale and as a waste contaminate freshwater ecosystems. Growing amount of so-called civilization diseases, such as different type of cancer, significantly contribute to this form of pollution. The aim of the present study was to determine how the exposure to chemotherapeutics: cyclophosphamide (CP) and cisplatin (CDDP), at detected in environment concentrations, influence proteome profile, life history and population parameters of naturally setting surface waters Daphnia pulex and Daphnia pulicaria. The parameters important for crustaceans, survivorship and population growth rate, were importantly decreased by CDDP treatment but not influenced by CP. On the contrary, the individual growth rate was affected only by CP and exclusively in the case of D. pulicaria. In both clones treated with CP or CDDP, decreased number of eggs was observed. Interestingly, Daphnia males were less sensitive to tested chemotherapeutic than females. Proteome profile revealed that tested anticancer pharmaceuticals modified expression of some proteins involved in Daphnia metabolism. Moreover, males exposed to CDDP showed increased level of enzymes participating in DNA repair. Summing up, the contaminating environment chemotherapeutics reduced fitness of naturally occurring Daphnia species. In consequence this may affect functioning of the aquatic food webs
    corecore