3 research outputs found

    Towards constructive approach to end-to-end slice isolation in 5G networks

    No full text
    Abstract Although 5G (fifth generation) networks are still in the realm of ideas, their architecture can be considered as reaching a forming phase. There are several reports and white papers which attempt to precise 5G architectural requirements presenting them from different points of view, including techno-socio-economic impacts and technological constraints. Most of them deal with network slicing aspects as a central point, often strengthening slices with slice isolation. The idea of isolation in the network is not new. However, currently considered technologies give new capabilities that can bring added value in this field. The goal of this paper is to present and examine the isolation capabilities and selected approaches to its realization in network slicing context. As the 5G architecture is still evolving, the specification of isolated slices operation and management brings new requirements that need to be addressed, especially in a context of end-to-end (E2E) security. Thus, an outline of recent trends in slice isolation and a set of challenges are presented. The challenges, if properly addressed, could be a step from the concept of 5G networks to proof-of-concept solutions which provide E2E user’s security based on slices isolation. Among other things, the key features are proper slice design and establishment, security at interfaces, suitable access protocols, correct virtual resources sharing, and an adaptable management and orchestration architecture (MANO). In conclusion of the paper, short outlines of two of the main secure isolation challenges are given: a proper definition of isolation parameters and designing suitable MANO system

    Verticals in 5G MEC-Use Cases and Security Challenges

    No full text
    5G is the fifth-generation cellular network satisfying the requirements IMT-2020 (International Mobile Telecommunications-2020) of the International Telecommunication Union. Mobile network operators started using it worldwide in 2019. Generally, 5G achieves exceptionally high values of performance parameters of access and transmission. The application of edge servers has been proposed to facilitate implementing such requirements of 5G, resulting in 5G MEC (Multi-access Edge Computing) technology. Moreover, to optimize services for specific business applications, the concept of 5G vertical industries has been proposed. In this article, we study how the application of the MEC technology affects the functioning of 5G MEC-based services. We consider twelve representative vertical industries of 5G MEC by presenting their essential characteristics, threats, vulnerabilities, and known attacks. Furthermore, we analyze their functional properties, give efficiency patterns and identify the effect of applying the MEC technology in 5G on the resultant network’s quality parameters to determine the expected security requirements. As a result of the research, we identify the impact of classified threats on the 5G empowered vertical industries and identify the most sensitive cases to focus on their protection against network attacks in the first place
    corecore