5 research outputs found

    Statistical comparison of ensemble implementations of Grover's search algorithm to classical sequential searches

    Full text link
    We compare pseudopure state ensemble implementations, quantified by their initial polarization and ensemble size, of Grover's search algorithm to probabilistic classical sequential search algorithms in terms of their success and failure probabilities. We propose a criterion for quantifying the resources used by the ensemble implementation via the aggregate number of oracle invocations across the entire ensemble and use this as a basis for comparison with classical search algorithms. We determine bounds for a critical polarization such that the ensemble algorithm succeeds with a greater probability than the probabilistic classical sequential search. Our results indicate that the critical polarization scales as N^(-1/4) where N is the database size and that for typical room temperature solution state NMR, the polarization is such that the ensemble implementation of Grover's algorithm would be advantageous for N > 10^2

    Temperature-dependent transport in a sixfold degenerate two-dimensional electron system on a H-Si(111) surface

    Full text link
    Low-field magnetotransport measurements on a high mobility (mu=110,000 cm^2/Vs) two-dimensional (2D) electron system on a H-terminated Si(111) surface reveal a sixfold valley degeneracy with a valley splitting <= 0.1 K. The zero-field resistivity rho_{xx} displays strong temperature dependence for 0.07 < T < 25 K as predicted for a system with high degeneracy and large mass. We present a method for using the low-field Hall coefficient to probe intervalley momentum transfer (valley drag). The relaxation rate is consistent with Fermi liquid theory, but a small residual drag as T->0 remains unexplained.Comment: 5 pages, 4 figures; revised and slightly shortened for publication

    Clinical Pathway for Coronary Atherosclerosis in Patients Without Conventional Modifiable Risk Factors JACC State-of-the-Art Review

    Get PDF
    Reducing the incidence and prevalence of standard modifiable cardiovascular risk factors (SMuRFs) is critical to tackling the global burden of coronary artery disease (CAD). However, a substantial number of individuals develop coronary atherosclerosis despite no SMuRFs. SMuRFless patients presenting with myocardial infarction have been observed to have an unexpected higher early mortality compared to their counterparts with at least 1 SMuRF. Evidence for optimal management of these patients is lacking. We assembled an international, multidisciplinary team to develop an evidence-based clinical pathway for SMuRFless CAD patients. A modified Delphi method was applied. The resulting pathway confirms underlying atherosclerosis and true SMuRFless status, ensures evidence-based secondary prevention, and considers additional tests and interventions for less typical contributors. This dedicated pathway for a previously overlooked CAD population, with an accompanying registry, aims to improve outcomes through enhanced adherence to evidence-based secondary prevention and additional diagnosis of modifiable risk factors observed
    corecore