29 research outputs found
The influence of plant mulches on the content of phenolic compounds in soil and primary weed infestation of maize
In growing maize, an increase in the content of phenolic compounds and selected phenolic acids in soil was found after the incorporation of white mustard, buckwheat, spring barley, oats and rye mulches into the soil. The highest content of phenolic compounds in soil was found after oats mulch incorporation (20% more than in the control soil). The highest content of selected phenolic acids was found for the soil with the oats and rye mulch. Among the phenolic acids investigated, ferulic acid was most commonly found in the soil with the plant mulches. However, two phenolic acids: the protocatechuic and chlorogenic acid, were not detected in any soil samples (neither in the control soil nor in the mulched soil). At the same time, a decrease in the primary weed infestation level in maize was found in the plots with all the applied plant mulches, especially on the plots with oats, barley and mustard. The plant mulches were more inhibitory against monocotyledonous weeds than dicotyledonous ones. During high precipitation events and wet weather, a rapid decrease in the content of phenolic compounds in soil and an increase in the primary weed infestation level in maize were observed
Wheat and Barley: Acclimatization to Abiotic and Biotic Stress
Twelve articles (ten research papers and two reviews) included in the Special Issue entitled “Wheat and Barley: Acclimatization to Abiotic and Biotic Stress” are summed up here to present the latest research on the molecular background of adaptation to environmental stresses in two cereal species. Crucial research results were presented and discussed, as they may be of importance in breeding aimed at increasing wheat and barley tolerance to abiotic and biotic stresses
Drought-Stress Induced Physiological and Molecular Changes in Plants 2.0
Plant adaptation to soil drought is a topic that is currently under investigation [...
Drought-Stress Induced Physiological and Molecular Changes in Plants 2.0
Plant adaptation to soil drought is a topic that is currently under investigation [...