19 research outputs found

    Effects of varying salinity on phytoplankton growth in a low-salinity coastal pond under two nutrient conditions

    Full text link
    Human activities have clearly caused dramatic alterations of the terrestrial nitrogen cycle, and analyses of the extent and effects of such changes are now common in the scientific literature. However, any attempt to evaluate N cycling processes within ecosystems, as well as anthropogenic influences on the N cyclc, requires an understanding of the magnitude of inputs via biological nitrogen fixation (BNF). Although there have been many studies addressing the microbiology, physiology, and magnitude of N fixation at local scales, there are very few estimates of BNF over large scales. We utilized >10G preexisting published estimates of BNF to generate biome- And global-level estimates of biological N fixation. We also used net primary productivity (NPP) and evapotranspiration (ET) estimates from the Century terrestrial ecosystem model to examine global relationships between these variables and BNF as well as to compare observed and Century-modeled BNF. Our data-based estimates showed a strong positive relationship between ecosystem ET and BNF, and our analyses suggest that while the model's simple relationships for BNF predict broad scale patterns, they do not capture much of the variability or magnitude of published rates. Patterns of BNF were also similar to patterns of ecosystem NPP. Our best estimate of potential nitrogen fixation by natural ecosystems is -195 Tg N yr-1 with a range of 100-290 Tg N yr-1. Although these estimates do not account for the decrease in natural N fixation due to cultivation, this would not dramatically alter our estimate, as the greatest reductions in area have occurred in systems characterized by relatively low rates of N fixation (e.g., grasslands). Although our estimate of BNF in natural ecosystems is similar to previously published estimates of terrestrial BNF, we believe that this study provides a more documented, constrained estimate of this important flux.This work was funded by a NSF Research Experience for Undergraduates grant (OCE-0097498)

    Macrophyte abundance in Waquoit Bay : effects of land-derived nitrogen loads on seasonal and multi-year biomass patterns

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Estuaries and Coasts 31 (2008): 532-541, doi:10.1007/s12237-008-9039-6.Anthropogenic inputs of nutrients to coastal waters have rapidly restructured coastal ecosystems. To examine the response of macrophyte communities to land-derived nitrogen loading, we measured macrophyte biomass monthly for six years in three estuaries subject to different nitrogen loads owing to different land uses on the watersheds. The set of estuaries sampled had nitrogen loads over the broad range of 12 to 601 kg N ha-1 y-1. Macrophyte biomass increased as nitrogen loads increased, but the response of individual taxa varied. Specifically, biomass of Cladophora vagabunda and Gracilaria tikvahiae increased significantly as nitrogen loads increased. The biomass of other macroalgal taxa tended to decrease with increasing load, and the relative proportion of these taxa to total macrophyte biomass also decreased. The seagrass, Zostera marina, disappeared from the higher loaded estuaries, but remained abundant in the estuary with the lowest load. Seasonal changes in macroalgal standing stock were also affected by nitrogen load, with larger fluctuations in biomass across the year and higher minimum biomass of macroalgae in the higher loaded estuaries. There were no significant changes in macrophyte biomass over the six years of this study, but there was a slight trend of increasing macroalgal biomass in the latter years. Macroalgal biomass was not related to irradiance or temperature, but Z. marina biomass was highest during the summer months when light and temperatures peak. Irradiance might, however, be a secondary limiting factor controlling macroalgal biomass in the higher loaded estuaries by restricting the depth of the macroalgal canopy. The relationship between the bloom-forming macroalgal species, C. vagabunda and G. tikvahiae, and nitrogen loads suggested a strong connection between development on watersheds and macroalgal blooms and loss of seagrasses. The influence of watershed land uses largely overwhelmed seasonal and inter-annual differences in standing stock of macrophytes in these temperate estuaries.This research was supported by the National Oceanic and Atmospheric Administration (NOAA), Cooperative Institute for Coastal and Estuarine Environmental Technologies (CICEET-UNH#99-304, NOAA NA87OR512), NOAA National Estuarine Research Reserve Graduate Research Fellowship NERRS GRF, #NA77OR0228), and an Environmental Protection Agency (EPA) STAR Fellowship for Graduate Environmental Study (U-915335-01-0) awarded to J. Hauxwell. S. Fox was supported by a NOAA NERRS GRF (#NA03NOS4200132) and an EPA STAR Graduate Research Fellowship. We also thank the Quebec-Labrador Foundation Atlantic Center for the Environment's Sounds Conservancy Program and the Boston University Ablon/Bay Committee for their awarding research funds

    Nutrient limitation of phytoplankton growth in Vineyard Sound and Oyster Pond, Falmouth, Massachusetts

    Full text link
    Intensive agriculture represents a recent extension of green roof technology. Perceived ecosystem services provided by rooftop farming include stormwater management and the production of affordable and nutritious vegetables for local consumption. However, intensive agriculture can increase nutrient loads to surface water, yet there is little empirical data from full-scale operational rooftop farms. This study reports the N balance and N management efficiency of the Brooklyn Grange Navy Yard Farm, a 0.61-ha farm atop an 11-story building in New York City USA. We monitored atmospheric N deposition, soil N concentration, N output by harvest, N leaching from soil, and drainage N output, in addition to estimating net N mineralization and the N load to sewers during the combined sewer overflows. We found that the annual drainage N output was 1,100% of the atmospheric bulk N deposition, and was 540% of the estimated total atmospheric N deposition, which makes the Brooklyn Grange a net N source in the urban environment. Annual N leaching from soil was 97% of fertilizer N input, and the efficiency of N management can be lower than in conventional vegetable production. For the Brooklyn Grange to integrate stormwater management and intensive agriculture, it will be important to use soil with greater water holding capacity within the range of readily available water, and to recycle drainage. This case study shows how the intensification of agriculture on rooftops should be managed for both the yield and quality of crops and to reduce N loss to storm drains, which affects aquatic ecosystems and water quality.We thank the Valiela Laboratory, Ecosystems Center, and the Oyster Pond Environmental Trust. This project was funded by NSF-Research Experience for Undergraduates site grant OCE-0097498

    Using A Modified Ensemble Kalman Filter Approach To Filter Pan-Arctic Eddy Covariance Flux Data

    No full text
    We present an application of the Ensemble Kalman Filter (EnKF) to assimilate eddy covariance data from several sites in the arctic and test a simple model of tundra carbon dioxide exchange. We modified the EnKF to allow adaptive noise estimation by providing a feedback from the model-data residuals (innovations) to the Monte-Carlo noise added to the ensemble of model simulations. Leaf area index (LAI) was allowed to vary as an estimated parameter within the EnKF; variation in LAI accounts for seasonal phenology, wind driven changes in the tower footprint, and, most importantly, for latent or unaccounted variables missing from the model. We then use the EnKF to assimilate the data into the PLIRTLE model of arctic ecosystem-atmosphere CO2 exchange (Shaver et al. 2007, J. Ecol. 95:802-817). Filtering the data with the modified EnKF improved estimates of CO2 exchange both by filtering out noise in the eddy covariance data and by compensating for biases associated with deficiencies in the model. Accounting for latent variables in the EnKF, but without the adaptive noise estimation, improved the filter performance slightly over the unmodified EnKF. Adding the adaptive noise estimation without accounting for latent variables resulted in very high levels of model noise, which allowed the filter to track the data virtually without flaw, but did not filter out obvious noise in the data stream. The best performance was achieved when both latent-variable accounting and adaptive noise estimation were added to the EnKF. Finally we used the modified EnKF to test the PLIRTLE model. We found the trends in the estimates of LAI were associated with seasonal phenology. However, the EnKF also produced a diel pattern in the LAI estimates for some sites that was clearly not random. This pattern is indicative of some unaccounted variable missing from the PLIRTLE model. We hypothesize that the mechanism missing in the PLIRTLE model, at least for one Alaskan site, may be stomatal closure driven by low atmospheric humidity

    Following up on a Margalevian concept: Interactions and exchanges among adjacent parcels of coastal landscapes

    Get PDF
    Some decades ago Margalef speculated that study of the exchanges across boundaries that separate different types of ecological systems would provide significant insights about properties and processes within the units that make up ecological mosaics. Although such boundaries might be difficult to define, it seemed likely that such exchanges among units would influence the function and structure of the adjoined systems. In this paper we explore exchanges across such ecological boundaries in coastal ecosystems in Cape Cod, Massachusetts, and elsewhere. We find that, indeed, definition of such boundaries is ambiguous, but study of the exchanges is more useful. In the Cape Cod system, water transport down-gradient is the dominant mechanism exerting influence on down-gradient systems. The direction of ecological control across such boundaries is largely asymmetrical, and properties of up-gradient units exert significant influence on down-gradient units. General properties of donor and receptor parcels are hard to discern, but clearly, parcels making up an ecological mosaic are not independent units, but are coupled by transfers from upgradient tesserae. Studies of controls of ecological systems need to include inter-unit influences as well as internal mechanisms.No disponibl
    corecore