47 research outputs found
Gains in Knowledge and Perception of Engineering after Participation in an Engineering Design Web-Experience Are Gender-Dependent
Web-based activities have the potential to teach engineering in both formal and informal science education settings, maximizing outreach efforts. To date, many activities available on the internet teach about engineering, but few allow students to truly “do” engineering.
This project utilized web animation and interaction in the design of a web-based experience focused on engineering design. In this activity, targeted toward middle school students, users played the role of engineer and engaged in the process of designing a cell phone for the older adult market. It was hoped that this web-based activity would increase participant understanding of what engineering is and the steps of the engineering design process, while also encouraging students to consider engineering-related careers. An additional aim of this study was to determine whether the web-based application and the object of design (a cell phone) would appeal to female students as much as it would to male students.
To test this, 162 middle-school students participated in the web-experience. Summative measures were taken pre- and post- activity using an on-line web-based survey to test their knowledge of engineering design and the engineering design process. The post-survey also asked additional questions to determine students’ perceptions of engineering and also perceptions of the web activity. Data were analyzed for the central tendencies of each question, item and scale means, and cross tabulated to identify statistically significant differences between the responses of male and female students. Prior to the web-based experience female students had a higher base-line knowledge of what engineering is than male students (p = 0.026), however after participation in the activity there were no statistically significant gender-based differences.
The activity did increase understanding of engineering in the group as a whole, with a mean increase from 5.12 out of 10 correct responses on the pre-test to 7.10 out of 10 (p = 0.000). Regarding the web-experience, female students tended to express better perceptions of the elements of the activity, but these differences were not statistically significant. Despite the activity, female students exhibited less positive perceptions of engineering and engineering as a career than male students. They were less likely to feel they could become an engineer if they wanted to (0.005), to see themselves in an engineering-related career (p \u3c 0.000), and to see themselves as an engineer (p
These results suggest that female middle-school students have a better base knowledge of what engineering is than male students, and that a web-based engineering experience can improve understanding in both genders. Both female and male students perceived the website activity positively, which promotes future use of this educational means. Future work is needed to determine how similar activities can be altered to better address the disparity in perceptions of engineering as a career between genders
New laboratory measurements of CH4 in Titan's conditions and a reanalysis of the DISR near-surface spectra at the Huygens landing site
International audienceLaboratory spectra of methane-nitrogen mixtures have been recorded in the near-infrared range (1.0 - 1.65 µm) in conditions similar to Titan's near surface, to facilitate the interpretation of the DISR/DLIS spectra taken during the last phase of the descent of the Huygens Probe, when the surface was illuminated by a surface science lamp. We used a 0.03 cm-1 spectral resolution, adequate to resolve the lines at high pressure (pN2 ~ 1.5 bar). By comparing the laboratory spectra with synthetic calculations in the well-studied ν2 + 2ν3 band (7515-7620 cm-1), we determine a methane absorption column density of 178±20 cm-am and a temperature of 118±10 K in our experiment. From this, we derive the methane absorption coefficients over 1.0-1.65 µm with a 0.03 cm-1 sampling, allowing for the extrapolation of the results to any other methane column density under the relevant pressure and temperature conditions. We then revisit the calibration and analysis of the Titan "lamp-on" DLIS spectra. We infer a 5.1±0.8 % methane mixing ratio in the first 25 m of Titan's atmosphere. The CH4 mixing ratio measured 90 sec after landing from a distance of 45 cm is found to be 0.92±0.25 times this value, thus showing no post-landing outgassing of methane in excess of ̴ 20 %. Finally, we determine the surface reflectivity as seen from 25 m and 45 cm and find that the 1500 nm absorption band is deeper in the post-landing spectrum as compared to pre-landing
Recommended from our members
Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns
In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste contaminated by NORM''
Albedo and Reflection Spectra of Extrasolar Giant Planets
We generate theoretical albedo and reflection spectra for a full range of
extrasolar giant planet (EGP) models, from Jovian to 51-Pegasi class objects.
Our albedo modeling utilizes the latest atomic and molecular cross sections, a
Mie theory treatment of extinction by condensates, a variety of particle size
distributions, and an extension of the Feautrier radiative transfer method
which allows for a general treatment of the scattering phase function. We find
that due to qualitative similarities in the compositions and spectra of objects
within each of five broad effective temperature ranges, it is natural to
establish five representative EGP albedo classes: a ``Jovian'' class (T K; Class I) with tropospheric ammonia clouds, a ``water
cloud'' class (T K; Class II) primarily affected by
condensed HO, a ``clear'' class (T K; Class III)
which lacks clouds, and two high-temperature classes: Class IV (900 K
T 1500 K) for which alkali metal absorption
predominates, and Class V (T 1500 K and/or low surface
gravity ( 10 cm s)) for which a high silicate layer
shields a significant fraction of the incident radiation from alkali metal and
molecular absorption. The resonance lines of sodium and potassium are expected
to be salient features in the reflection spectra of Class III, IV, and V
objects. We derive Bond albedos and effective temperatures for the full set of
known EGPs and explore the possible effects of non-equilibrium condensed
products of photolysis above or within principal cloud decks. As in Jupiter,
such species can lower the UV/blue albedo substantially, even if present in
relatively small mixing ratios.Comment: revised LaTeX manuscript accepted to Ap.J.; also available at
http://jupiter.as.arizona.edu/~burrows/paper
Barnegat Bay-Little Egg Harbor Estuary : case study of a highly eutrophic coastal bay system
Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 17 (2007): S3–S16, doi:10.1890/05-0800.1.The Barnegat Bay-Little Egg Harbor Estuary is classified here as a highly eutrophic estuary based on application of NOAA’s National Estuarine Eutrophication Assessment model. Because it is shallow, poorly flushed, and bordered by highly developed watershed areas, the estuary is particularly susceptible to the effects of nutrient loading. Most of this load (~50%) is from surface water inflow, but substantial fractions also originate from atmospheric deposition (~39%), and direct groundwater discharges (~11%). No point source inputs of nutrients exist in the Barnegat Bay watershed. Since 1980, all treated wastewater from the Ocean County Utilities Authority's regional wastewater treatment system has been discharged 1.6 km offshore in the Atlantic Ocean. Eutrophy causes problems in this system, including excessive micro- and macroalgal growth, harmful algal blooms (HABs), altered benthic invertebrate communities, impacted harvestable fisheries, and loss of essential habitat (i.e., seagrass and shellfish beds). Similar problems are evident in other shallow lagoonal estuaries of the Mid-Atlantic and South Atlantic regions. To effectively address nutrient enrichment problems in the Barnegat Bay-Little Egg Harbor Estuary, it is important to determine the nutrient loading levels that produce observable impacts in the system. It is also vital to continually monitor and assess priority indicators of water quality change and estuarine health. In addition, the application of a new generation of innovative models using web-based tools (e.g., NLOAD) will enable researchers and decision-makers to more successfully manage nutrient loads from the watershed. Finally, the implementation of stormwater retrofit projects should have beneficial effects on the system.Financial support of the Barnegat Bay National Estuary Program and Jacques Cousteau National Estuarine Research Reserve is gratefully acknowledged
The response of Tampa Bay to a legacy mining nutrient release in the year following the event
IntroductionCultural eutrophication threatens numerous ecological and economical resources of Florida’s coastal ecosystems, such as beaches, mangroves, and seagrasses. In April 2021, an infrastructure failure at the retired Piney Point phosphorus mining retention reservoir garnered national attention, as 814 million liters of nutrient rich water were released into Tampa Bay, Florida over 10 days. The release of nitrogen and phosphorus-rich water into Tampa Bay – a region that had been known as a restoration success story since the 1990s – has highlighted the potential for unexpected challenges for coastal nutrient management.MethodsFor a year after the release, we sampled bi-weekly at four sites to monitor changes in nutrients, stable isotopes, and phytoplankton communities, complemented with continuous monitoring by multiparameter sondes. Our data complement the synthesis efforts of regional partners, the Tampa Bay and Sarasota Bay Estuary Programs, to better understand the effects of anthropogenic nutrients on estuarine health.ResultsPhytoplankton community structure indicated an initial diatom bloom that dissipated by the end of April 2021. In the summer, the bay was dominated by Karenia brevis, with conditions improving into the fall. To determine if there was a unique carbon (C) and nitrogen (N) signature of the discharge water, stable isotope values of carbon (δ13C) and nitrogen (δ15N) were analyzed in suspended particulate material (SPM). The δ15N values of the discharge SPM were −17.88‰ ± 0.76, which is exceptionally low and was unique relative to other nutrient sources in the region. In May and early June of 2021, all sites exhibited a decline in the δ15N values of SPM, suggesting that discharged N was incorporated into SPM after the event. The occurrence of very low δ15N values at the reference site, on the Gulf Coast outside of the Bay, indicates that some of the discharge was transported outside of Tampa Bay.DiscussionThis work illustrates the need for comprehensive nutrient management strategies to assess and manage the full range of consequences associated with anthropogenic nutrient inputs into coastal ecosystems. Ongoing and anticipated impacts of climate change – such as increasing tropical storm intensity, temperatures, rainfall, and sea level rise – will exacerbate this need
Overview of the coordinated ground-based observations of Titan during the Huygens mission
Coordinated ground-based observations of Titan were performed around or during the Huygens atmospheric probe mission at Titan on 14 January 2005, connecting the momentary in situ observations by the probe with the synoptic coverage provided by continuing ground-based programs. These observations consisted of three different categories: (1) radio telescope tracking of the Huygens signal at 2040 MHz, (2) observations of the atmosphere and surface of Titan, and (3) attempts to observe radiation emitted during the Huygens Probe entry into Titan's atmosphere. The Probe radio signal was successfully acquired by a network of terrestrial telescopes, recovering a vertical profile of wind speed in Titan's atmosphere from 140 km altitude down to the surface. Ground-based observations brought new information on atmosphere and surface properties of the largest Satumian moon. No positive detection of phenomena associated with the Probe entry was reported. This paper reviews all these measurements and highlights the achieved results. The ground-based observations, both radio and optical, are of fundamental imnortance for the interpretatinn of results from the Huygens mission