95 research outputs found

    Ive Got My Virtual Eye On You: Remote Proctors And Academic Integrity

    Get PDF
    This paper discusses the challenges of online teaching, the reasons students cheat and one means of curtailing that cheating in the online environment. The use of Securexam Remote Proctor System in one university application is reviewed

    The AMMA mulid network for aerosol characterization in West Africa

    Full text link
    Three ground based portable low power consumption microlidars (MULID) have been built and deployed at three remote sites in Banizoumbou (Niger), Cinzana (Mali) and M'Bour (Senegal) in the framework of the African Monsoon Multidisciplinary Analyses (AMMA) project for the characterization of aerosols optical properties. A description of the instrument and a discussion of the data inversion method, including a careful analysis of measurement uncertainties (systematic and statistical errors) are presented. Some case studies of typical lidar profiles observed over the Banizoumbou site during 2006 are shown and discussed with respect to the AERONET 7-day back-trajectories and the biomass burning emissions from the Combustion Emission database for the AMMA campaign

    QUBIC instrument for CMB polarization measurements

    Get PDF
    Measurements of cosmic microwave background (CMB) polarization may reveal the presence of a background of gravitational waves produced during cosmic inflation, providing thus a test of inflationary models. The Q&U Bolometric Interferometer for Cosmology (QUBIC) is an experiment designed to measure the CMB polarization. It is based on the novel concept of bolometric interferometry, which combines the sensitivity of bolometric detectors with the properties of beam synthesis and control of calibration offered by interferometers. To modulate and extract the input polarized signal of the CMB, QUBIC exploits Stokes polarimetry based on a rotating half-wave plate (HWP). In this work, we illustrate the design of the QUBIC instrument, focusing on the polarization modulation system, and we present preliminary results of beam calibrations and the performance of the HWP rotator at 300 K

    QUBIC VI: cryogenic half wave plate rotator, design and performances

    Full text link
    Inflation Gravity Waves B-Modes polarization detection is the ultimate goal of modern large angular scale cosmic microwave background (CMB) experiments around the world. A big effort is undergoing with the deployment of many ground-based, balloon-borne and satellite experiments using different methods to separate this faint polarized component from the incoming radiation. One of the largely used technique is the Stokes Polarimetry that uses a rotating half-wave plate (HWP) and a linear polarizer to separate and modulate the polarization components with low residual cross-polarization. This paper describes the QUBIC Stokes Polarimeter highlighting its design features and its performances. A common systematic with these devices is the generation of large spurious signals synchronous with the rotation and proportional to the emissivity of the optical elements. A key feature of the QUBIC Stokes Polarimeter is to operate at cryogenic temperature in order to minimize this unwanted component. Moving efficiently this large optical element at low temperature constitutes a big engineering challenge in order to reduce friction power dissipation. Big attention has been given during the designing phase to minimize the differential thermal contractions between parts. The rotation is driven by a stepper motor placed outside the cryostat to avoid thermal load dissipation at cryogenic temperature. The tests and the results presented in this work show that the QUBIC polarimeter can easily achieve a precision below 0.1{\deg} in positioning simply using the stepper motor precision and the optical absolute encoder. The rotation induces only few mK of extra power load on the second cryogenic stage (~ 8 K).Comment: Part of a series of 8 papers on QUBIC to be submitted to a special issue of JCA

    Planck 2015 results. V. LFI calibration

    Get PDF
    We present a description of the pipeline used to calibrate the Planck Low Frequency Instrument (LFI) timelines into thermodynamic temperatures for the Planck 2015 data release, covering four years of uninterrupted operations. As in the 2013 data release, our calibrator is provided by the spin-synchronous modulation of the cosmic microwave background dipole, but we now use the orbital component, rather than adopting the Wilkinson Microwave Anisotropy Probe (WMAP) solar dipole. This allows our 2015 LFI analysis to provide an independent Solar dipole estimate, which is in excellent agreement with that of HFI and within 1σ (0.3% in amplitude) of the WMAP value. This 0.3% shift in the peak-to-peak dipole temperature from WMAP and a general overhaul of the iterative calibration code increases the overall level of the LFI maps by 0.45% (30 GHz), 0.64% (44 GHz), and 0.82% (70 GHz) in temperature with respect to the 2013 Planck data release, thus reducing the discrepancy with the power spectrum measured by WMAP. We estimate that the LFI calibration uncertainty is now at the level of 0.20% for the 70 GHz map, 0.26% for the 44 GHz map, and 0.35% for the 30 GHz map. We provide a detailed description of the impact of all the changes implemented in the calibration since the previous data release
    • 

    corecore