11 research outputs found

    Phase transitions and ferroelectric properties in BiScO3-Bi(Zn1/2Ti1/2)O3-BaTiO3 solid solutions

    Get PDF
    Ceramics solid solutions within the ternary perovskite system Bi(Zn1/2Ti1/2)O3-BiScO3-BaTiO3 were synthesized via solid-state processing techniques. The crystal structure of sintered ceramics was analyzed by x-ray diffraction. A stable perovskite phase was obtained for all compositions with a BaTiO3 content greater than 50 mol %. Furthermore, a change in symmetry from pseudocubic to tetragonal was observed as the mole fraction of BaTiO3 increased. Dielectric measurements show a dielectric anomaly associated with a phase transformation over the temperature range of 30 °C–210 °C for all compositions. Examination of the polarization hysteresis behavior revealed weakly nonlinear hysteresis loops. With these data, ferroelectric phase diagrams were derived showing the transition between the pseudocubic relaxor behavior to the tetragonal normal ferroelectric behavior. This transition was also correlated with changes in the diffuseness parameter

    First Principles Investigation of Ferromagnetism and Ferroelectricity in Bismuth Manganite

    Full text link
    We present results of local spin density approximation (LSDA) pseudopotential calculations for the perovskite structure oxide, bismuth manganite (BiMnO3). The origin of the differences between bismuth manganite and other perovskite manganites is determined by first calculating total energies and band structures of the high symmetry cubic phase, then sequentially lowering the magnetic and structural symmetry. Our results indicate that covalent bonding between bismuth cations and oxygen anions stabilizes different magnetic and structural phases compared with the rare earth manganites. This is consistent with recent experimental results showing enhancement of charge ordering in doped bismuth manganite

    New Phases at High Pressure

    No full text
    corecore