5 research outputs found

    Multiplex analysis of intratumoural immune infiltrate and prognosis in patients with stage II–III colorectal cancer from the SCOT and QUASAR 2 trials: A retrospective analysis

    Get PDF
    Background Tumour-infiltrating CD8+ cytotoxic T cells confer favourable prognosis in colorectal cancer. The added prognostic value of other infiltrating immune cells is unclear and so we sought to investigate their prognostic value in two large clinical trial cohorts. Methods We used multiplex immunofluorescent staining of tissue microarrays to assess the densities of CD8+, CD20+, FoxP3+, and CD68+ cells in the intraepithelial and intrastromal compartments from tumour samples of patients with stage II–III colorectal cancer from the SCOT trial (ISRCTN59757862), which examined 3 months versus 6 months of adjuvant oxaliplatin-based chemotherapy, and from the QUASAR 2 trial (ISRCTN45133151), which compared adjuvant capecitabine with or without bevacizumab. Both trials included patients aged 18 years or older with an Eastern Cooperative Oncology Group performance status of 0–1. Immune marker predictors were analysed by multiple regression, and the prognostic and predictive values of markers for colorectal cancer recurrence-free interval by Cox regression were assessed using the SCOT cohort for discovery and QUASAR 2 cohort for validation. Findings After exclusion of cases without tissue microarrays and with technical failures, and following quality control, we included 2340 cases from the SCOT trial and 1069 from the QUASAR 2 trial in our analysis. Univariable analysis of associations with recurrence-free interval in cases from the SCOT trial showed a strong prognostic value of intraepithelial CD8 (CD8IE) as a continuous variable (hazard ratio [HR] for 75th vs 25th percentile [75vs25] 0·73 [95% CI 0·68–0·79], p=2·5 × 10−16), and of intrastromal FoxP3 (FoxP3IS; 0·71 [0·64–0·78], p=1·5 × 10−13) but not as strongly in the epithelium (FoxP3IE; 0·89 [0·84–0·96], p=1·5 × 10−4). Associations of other markers with recurrence-free interval were moderate. CD8IE and FoxP3IS retained independent prognostic value in bivariable and multivariable analysis, and, compared with either marker alone, a composite marker including both markers (CD8IE-FoxP3IS) was superior when assessed as a continuous variable (adjusted [a]HR75 vs 25 0·70 [95% CI 0·63–0·78], p=5·1 × 10−11) and when categorised into low, intermediate, and high density groups using previously published cutpoints (aHR for intermediate vs high 1·68 [95% CI 1·29–2·20], p=1·3 × 10−4; low vs high 2·58 [1·91–3·49], p=7·9 × 10−10), with performance similar to the gold-standard Immunoscore. The prognostic value of CD8IE-FoxP3IS was confirmed in cases from the QUASAR 2 trial, both as a continuous variable (aHR75 vs 25 0·84 [95% CI 0·73–0·96], p=0·012) and as a categorical variable for low versus high density (aHR 1·80 [95% CI 1·17–2·75], p=0·0071) but not for intermediate versus high (1·30 [0·89–1·88], p=0·17). Interpretation Combined evaluation of CD8IE and FoxP3IS could help to refine risk stratification in colorectal cancer. Investigation of FoxP3IS cells as an immunotherapy target in colorectal cancer might be merited

    Reducing sheet resistance of self-assembled transparent graphene films by defect patching and doping with UV/ozone treatment

    No full text
    Liquid phase exfoliation followed by Langmuir-Blodgett self-assembly (LBSA) is a promising method for scalable production of thin graphene films for transparent conductor applications. However, monolayer assembly into thin films often induces a high density of defects, resulting in a large sheet resistance that hinders practical use. We introduce UV/ozone as a novel photochemical treatment that reduces sheet resistance of LBSA graphene threefold, while preserving the high optical transparency. The effect of such treatment on our films is opposite to the effect it has on mechanically exfoliated or CVD films, where UV/ozone creates additional defects in the graphene plane, increasing sheet resistance. Raman scattering shows that exposure to UV/ozone reduces the defect density in LBSA graphene, where edges are the dominant defect type. FTIR spectroscopy indicates binding of oxygen to the graphene lattice during exposure to ozone. In addition, work function measurements reveal that the treatment dopes the LBSA film, making it more conductive. Such defect patching paired with doping leads to an accessible way of improving the transparent conductor performance of LBSA graphene, making solutionprocessed thin films a candidate for industrial use

    Environ Health Perspect

    No full text
    The purpose of this study was to systematically investigate hazardous materials (hazmat) releases and determine the mechanisms of these accidents, and the industries/activities and chemicals involved. We analyzed responses by Massachusetts' six district hazmat teams from their inception through May 1996. Information from incident reports was extracted onto standard coding sheets. The majority of hazardous materials incidents were caused by spills, leaks, or escapes of hazardous materials (76%) and occurred at fixed facilities (80%). Transportation-related accidents accounted for 20% of incidents. Eleven percent of hazardous materials incidents were at schools or health care facilities. Petroleum-derived fuels were involved in over half of transportation-related accidents, and these accounted for the majority of petroleum fuel releases. Chlorine derivatives were involved in 18% of all accidents and were associated with a wide variety of facility types and activities. In conclusion, systematic study of hazardous materials incidents allows the identification of preventable causes of these incidents.9300926PMC147036

    Accounting for intensity variation in image analysis of large‐scale multiplexed clinical trial datasets

    Get PDF
    Multiplex immunofluorescence (mIF) imaging can provide comprehensive quantitative and spatial information for multiple immune markers for tumour immunoprofiling. However, application at scale to clinical trial samples sourced from multiple institutions is challenging due to pre-analytical heterogeneity. This study reports an analytical approach to the largest multi-parameter immunoprofiling study of clinical trial samples to date. We analysed 12,592 tissue microarray (TMA) spots from 3,545 colorectal cancers sourced from more than 240 institutions in two clinical trials (QUASAR 2 and SCOT) stained for CD4, CD8, CD20, CD68, FoxP3, pan-cytokeratin, and DAPI by mIF. TMA slides were multi-spectrally imaged and analysed by cell-based and pixel-based marker analysis. We developed an adaptive thresholding method to account for inter- and intra-slide intensity variation in TMA analysis. Applying this method effectively ameliorated inter- and intra-slide intensity variation improving the image analysis results compared with methods using a single global threshold. Correlation of CD8 data derived by our mIF analysis approach with single-plex chromogenic immunohistochemistry CD8 data derived from subsequent sections indicates the validity of our method (Spearman's rank correlation coefficients ρ between 0.63 and 0.66, p ≪ 0.01) as compared with the current gold standard analysis approach. Evaluation of correlation between cell-based and pixel-based analysis results confirms equivalency (ρ > 0.8, p ≪ 0.01, except for CD20 in the epithelial region) of both analytical approaches. These data suggest that our adaptive thresholding approach can enable analysis of mIF-stained clinical trial TMA datasets by digital pathology at scale for precision immunoprofiling
    corecore