1,344 research outputs found
Cluster Transformation Coefficients for Structure and Dynamics Calculations in n-Particle Systems: Atoms, Nuclei, and Quarks
The structure and dynamics of an n-particle system are described with coupled
nonlinear Heisenberg's commutator equations where the nonlinear terms are
generated by the two-body interaction that excites the reference vacuum via
particle-particle and particle-hole excitations. Nonperturbative solutions of
the system are obtained with the use of dynamic linearization approximation and
cluster transformation coefficients. The dynamic linearization approximation
converts the commutator chain into an eigenvalue problem. The cluster
coefficients factorize the matrix elements of the (n)-particles or
particle-hole systems in terms of the matrix elements of the (n-1)-systems
coupled to a particle-particle, particle-hole, and hole-hole boson. Group
properties of the particle-particle, particle-hole, and hole-hole permutation
groups simplify the calculation of these coefficients. The particle-particle
vacuum-excitations generate superconductive diagrams in the dynamics of
3-quarks systems. Applications of the model to fermionic and bosonic systems
are discussed.Comment: 13 pages, 5 figures, Wigner Proceedings for Conference Wigner
Centenial Pecs, July 8-12, 200
Correlated EoM and Distributions for A=6 Nuclei
Energy spectra and electromagnetic transitions of nuclei are strongly
depending from the correlations of the bound nucleons. Two particle
correlations are responsible for the scattering of model particles either to
low momentum- or to high momentum-states. The low momentum states form the
model space while the high momentum states are used to calculate the G-matrix.
The three and higher order particle correlations do not play a role in the
latter calculation especially if the correlations induced by the scattering
operator are of sufficient short range. They modify however, via the long tail
of the nuclear potential, the Slater determinant of the A particles by
generating excited Slater's determinants. In this work the influence of the
correlations on the level structure and ground state distributions of even open
shell nuclei is analyzed via the boson dynamic correlation model BDCM. The
model is based on the unitary operator ({\it S} is the correlation
operator) formalism which in this paper is presented within a non perturbative
approximation. The low lying spectrum calculated for Li reproduce very well
the experimental spectrum while for He a charge radius slightly larger than
that obtained within the isotopic-shift (IS) theory has been calculated. Good
agreement between theoretical and experimental results has been obtained
without the introduction of a genuine three body force.Comment: 25 pages 4 figures. To be published in the Progress Theoretical
Physic
Extended Cluster Model for Light, and Medium Nuclei
The structures, the electromagnetic transitions, and the beta decay strengths
of exotic nuclei are investigated within an extended cluster model. We start by
deriving an effective nuclear Hamiltonian within the correlation
operator. Tensor forces are introduced in a perturbative expansion which
includes up to the second order terms. Within this Hamiltonian we calculate the
distributions and the radii of A=3,~4 nuclei. For exotic nuclei characterized
by n valence protons/neutrons we excite the structure of the closed shell
nuclei via mixed modes formed by considering correlations operators of higher
order. Good results have been obtained for the calculated transitions and for
the beta decay transition probabilities.Comment: 8-pages, 5-figure
Measuring and Managing the Performance of Territories as a hybrid field of study and practice: a System Dynamics Approach
The purpose of this paper is to illustrate how system dynamics (SD) modeling can be used to enrich performance management in local government and to foster a common shared view of the relevant system\u2019s structure and behavior among stakeholders for territorial strategic planning.
This is a quite hybrid field of analysis in performance measurement/management. In fact, in this context, performance is not primarily related to the single institutions in a regional area; it is rather associated to the territory where they operate.
We begin by showing how framing dynamic complexity through SD modeling can support consensus building among different stakeholders in a territory. This shifts the attention beyond the traditional view of strategic planning, which is focused on each single jurisdiction. As shown by the case-study in the paper, a Dynamic Performance Management (DPM) approach, may help different institutions to overcome collaboration barriers. In fact, such approach supports players to detect how pursuing a sustainable development of a territory impacts in the long run on the growth sustainability of each institution operating in the territory itself.
This implies that territorial public agencies, e.g. municipalities, may understand and communicate to their stakeholders that long-term performance cannot be only assessed in financial terms or bounded to output measures, but also in relation to the outcomes that public services will generate, i.e. in terms of their value transferred to the territory. Likewise, enterprises operating in a given territory can be enabled to detect how their own performance will be sustainable in the long run if they will generate not only financial capital (i.e. profits), but also social capital to the benefit of the other players belonging to the territory.
Therefore, a key to implement a DPM approach for each of the players is to combine an institutional (single-player) with an inter-institutional (i.e. multi-players or territory) perspective with a view to enhancing performance and pursuing sustainable development. An inter-institutional perspective frames the territory (rather than a single institution) as the relevant system where to comprise and manage the cause and effect relationships between performance factors and strategic resources.
As shown by the case-study in the paper, a DPM approach may help different institutions to overcome collaboration barriers. In fact, such approach supports players to detect the drivers of sustainable development for both the territory and the organizations belonging to it
ADAR enzyme and miRNA story: A nucleotide that can make the difference
Adenosine deaminase acting on RNA (ADAR) enzymes convert adenosine (A) to inosine (I) in double-stranded (ds) RNAs. Since Inosine is read as Guanosine, the biological consequence of ADAR enzyme activity is an A/G conversion within RNA molecules. A-to-I editing events can occur on both coding and non-coding RNAs, including microRNAs (miRNAs), which are small regulatory RNAs of ~20-23 nucleotides that regulate several cell processes by annealing to target mRNAs and inhibiting their translation. Both miRNA precursors and mature miRNAs undergo A-to-I RNA editing, affecting the miRNA maturation process and activity. ADARs can also edit 3' UTR of mRNAs, further increasing the interplay between mRNA targets and miRNAs. In this review, we provide a general overview of the ADAR enzymes and their mechanisms of action as well as miRNA processing and function. We then review the more recent findings about the impact of ADAR-mediated activity on the miRNA pathway in terms of biogenesis, target recognition, and gene expression regulation
Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma.
Background: ADAR enzymes convert adenosines to inosines within double-stranded RNAs, including microRNA
(miRNA) precursors, with important consequences on miRNA retargeting and expression. ADAR2 activity is impaired
in glioblastoma and its rescue has anti-tumoral effects. However, how ADAR2 activity may impact the miRNome
and the progression of glioblastoma is not known.
Results: By integrating deep-sequencing and array approaches with bioinformatics analyses and molecular studies,
we show that ADAR2 is essential to edit a small number of mature miRNAs and to significantly modulate the
expression of about 90 miRNAs in glioblastoma cells. Specifically, the rescue of ADAR2 activity in cancer cells recovers
the edited miRNA population lost in glioblastoma cell lines and tissues, and rebalances expression of onco-miRNAs and
tumor suppressor miRNAs to the levels observed in normal human brain. We report that the major effect of ADAR2 is
to reduce the expression of a large number of miRNAs, most of which act as onco-miRNAs. ADAR2 can edit miR-222/221
and miR-21 precursors and decrease the expression of the corresponding mature onco-miRNAs in vivo and in vitro, with
important effects on cell proliferation and migration.
Conclusions: Our findings disclose an additional layer of complexity in miRNome regulation and provide information
to better understand the impact of ADAR2 editing enzyme in glioblastoma. We propose that ADAR2 is a key factor for
maintaining edited-miRNA population and balancing the expression of several essential miRNAs involved in cancer
- …