11 research outputs found

    Pressure losses reduction in a steam turbine compact valve

    No full text
    Valves are integral parts of modern steam turbines. They provide flexible operations and fast load changes which have become more often due to the increasing share of renewable energy. Along with this, the low pressure loss is required for guaranteed operation conditions. This paper is concerned with investigation of pressure losses in the compact valve, which is used as a valve for the intermediate-pressure turbine part, and its geometry modification to lower overall pressure losses. The investigation is based on results of numerical simulations which were carried out in the Doosan Skoda Power Company using a package of ANSYS software tools. Source of increased pressure losses in the compact valve is identified and a way of its reduction is proposed based on the comparison of the current results with data from a typical control valve model. Data analysis is provided in the paper

    Identification of Two Novel Fibrinogen Bβ Chain Mutations in Two Slovak Families with Quantitative Fibrinogen Disorders

    No full text
    Congenital fibrinogen disorders are caused by mutations in one of the three fibrinogen genes that affect the synthesis, assembly, intracellular processing, stability or secretion of fibrinogen. Functional studies of mutant Bβ-chains revealed the importance of individual residues as well as three-dimensional structures for fibrinogen assembly and secretion. This study describes two novel homozygous fibrinogen Bβ chain mutations in two Slovak families with afibrinogenemia and hypofibrinogenemia. Peripheral blood samples were collected from all subjects with the aim of identifying the causative mutation. Coagulation-related tests and rotational thromboelastometry were performed. All exons and exon–intron boundaries of the fibrinogen genes (FGA, FGB and FGG) were amplified by PCR followed by direct sequencing. Sequence analysis of the three fibrinogen genes allowed us to identify two novel homozygous mutations in the FGB gene. A novel Bβ chain truncation (BβGln180Stop) was detected in a 28-year-old afibrinogenemic man with bleeding episodes including repeated haemorrhaging into muscles, joints, and soft tissues, and mucocutaneous bleeding and a novel Bβ missense mutation (BβTyr368His) was found in a 62-year-old hypofibrinogenemic man with recurrent deep and superficial venous thromboses of the lower extremities. The novel missense mutation was confirmed by molecular modelling. Both studying the molecular anomalies and the modelling of fibrinogenic mutants help us to understand the extremely complex machinery of fibrinogen biosynthesis and finally better assess its correlation with the patient’s clinical course

    A Functional Assay for the Determination of Heparin-Induced Thrombocytopenia via Flow Cytometry

    No full text
    Heparin-induced thrombocytopenia (HIT) is a life-threatening complication of heparin therapy (both unfractionated heparin and low-molecular-weight heparin). In our study, we examined a group of 122 patients with suspected HIT. The samples of all patients were analyzed in the first step using an immunoassay (ID-PaGIA Heparin/PF4, Hemos1L-Acustar HIT IgG, ZYMUTEST HIA Monostrip IgG) to detect the presence of antibodies against heparin–PF4 complexes (platelet factor 4). When the immunoassay was positive, the sample was subsequently analyzed for HIT with a functional flow cytometry assay, the HITAlert kit, the purpose of which was to demonstrate the ability of the antibodies present to activate platelets. A diagnosis of HIT can be made only after a positive functional test result. In this article, we present an overview of our practical experience with the use of the new functional method of analysis, HIT, with flow cytometry. In this work, we compared the mutual sensitivity of two functional tests, SRA and the flow cytometry HITAlert kit, in patients perceived as being at risk for HIT. This work aims to delineate the principle, procedure, advantages, pitfalls, and possibilities of the application of the functional test HITAlert using flow cytometry

    Heterogeneity of Genotype–Phenotype in Congenital Hypofibrinogenemia—A Review of Case Reports Associated with Bleeding and Thrombosis

    No full text
    Congenital fibrinogen disorders are diseases associated with a bleeding tendency; however, there are also reports of thrombotic events. Fibrinogen plays a role in the pathogenesis of thrombosis due to altered plasma concentrations or modifications to fibrinogen’s structural properties, which affect clot permeability, resistance to lysis, and its stiffness. Several distinct types of genetic change and pathogenetic mechanism have been described in patients with bleeding and a thrombotic phenotype, including mutations affecting synthesis or processing in three fibrinogen genes. In this paper, we focused on familial hypofibrinogenemia, a rare inherited quantitative fibrinogen disorder characterized by decreased fibrinogen levels with a high phenotypic heterogeneity. To begin, we briefly review the basic information regarding fibrinogen’s structure, its function, and the clinical consequences of low fibrinogen levels. Thereafter, we introduce 15 case reports with various gene mutations derived from the fibrinogen mutation database GFHT (French Study Group on Hemostasis and Thrombosis), which are associated with congenital hypofibrinogenemia with both bleeding and thrombosis. Predicting clinical presentations based on genotype data is difficult. Genotype–phenotype correlations would be of help to better understand the pathologic properties of this rare disease and to provide a valuable tool for the identification of patients who are not only at risk of bleeding, but also at risk of a thrombotic event

    Detection of Unknown and Rare Pathogenic Variants in Antithrombin, Protein C and Protein S Deficiency Using High-Throughput Targeted Sequencing

    No full text
    The deficiency of natural anticoagulants—antithrombin (AT), protein C (PC), and protein S (PS)—is a highly predisposing factor for thrombosis, which is still underdiagnosed at the genetic level. We aimed to establish and evaluate an optimal diagnostic approach based on a high-throughput sequencing platform suitable for testing a small number of genes. A fast, flexible, and efficient method involving automated amplicon library preparation and target sequencing on the Ion Torrent platform was optimized. The cohort consisted of a group of 31 unrelated patients selected for sequencing due to repeatedly low levels of one of the anticoagulant proteins (11 AT-deficient, 13 PC-deficient, and 7 PS-deficient patients). The overall mutation detection rate was 67.7%, highest in PC deficiency (76.9%), and six variants were newly detected—SERPINC1 c.398A > T (p.Gln133Leu), PROC c.450C > A (p.Tyr150Ter), c.715G > C (p.Gly239Arg) and c.866C > G (p.Pro289Arg), and PROS1 c.1468delA (p.Ile490fs) and c.1931T > A (p.Ile644Asn). Our data are consistent with those of previous studies, which mostly used time-consuming Sanger sequencing for genotyping, and the indication criteria for molecular genetic testing were adapted to this process in the past. Our promising results allow for a wider application of the described methodology in clinical practice, which will enable a suitable expansion of the group of indicated patients to include individuals with severe clinical findings of thrombosis at a young age. Moreover, this approach is flexible and applicable to other oligogenic panels

    Diagnostic value of clot formation parameters determined by rotational thromboelastometry in 63 patients with congenital dysfibrinogenemia

    No full text
    Rotational thromboelastometry (ROTEM) is a global hemostasis assay. The diagnosis added value of ROTEM in congenital dysfibrinogenemia remains to be established. The aim of this study was to analyze clot formation by ROTEM in a cohort of dysfibrinogenemic patients and to establish correlations with genotype, clinical features, and coagulation parameters. The study included genetically confirmed congenital dysfibrinogenemia cases (n = 63) and healthy controls (n = 50). EXTEM, INTEM, FIBTEM tests were used to measure ROTEM parameters, that is, clotting time (CT), clot formation time (CFT), maximal clot firmness (MCF) and amplitude 10 min after CT (A10). The ISTH bleeding assessment tool was used to determine bleeding episodes. CT (INTEM) was statistically significantly shorter in congenital dysfibrinogenemia patients compared to controls while CFT (EXTEM) was prolonged. Patients's MCF in EXTEM, INTEM, and FIBTEM were similar to controls while A10 (FIBTEM) was statistically significantly lower. Fibrinogen activity was positively correlated with fibrinogen antigen, A10 and MCF in all three assays. Bleeding phenotypes were observed in 23 (36.5%) patients. Only CFT in EXTEM and CT in INTEM were statistically different in patients with bleeding phenotype versus controls. Carriers of the FGA mutation p.Arg35His had a CT (EXTEM) slightly prolonged and a reduced A10 (FIBTEM) compared to controls. Some ROTEM parameters were able to distinguish congenital dysfibrinogenemia patients from controls, and patients with a bleeding phenotype. Prolonged CFT in EXTEM were associated with congenital dysfibrinogenemia and bleeding phenotype. Bleeding episodes in most patients were generally mild and prevalence of thrombosis was very low

    A novel nonsense mutation in FBG (c.1421G>A;p.Trp474Ter) in the beta chain of fibrinogen causing hypofibrinogenemia with bleeding phenotype

    No full text
    Congenital hypofibrinogenemia is a rare bleeding disorder characterized by a proportional decrease of functional and antigenic fibrinogen levels. Hypofibrinogenemia can be considered the phenotypic expression of heterozygous loss of function mutations occurring within one of the three fibrinogen genes (FGA, FGB, and FGG). Clinical manifestations are highly variable; most patients are usually asymptomatic, but may appear with mild to severe bleeding or thrombotic complications. We have sequenced all exons of the FGA, FGB, and FGG genes using the DNA isolated from the peripheral blood in two unrelated probands with mild hypofibrinogenemia. Coagulation screening, global hemostasis, and functional analysis tests were performed. Molecular modeling was used to predict the defect of synthesis and structural changes of the identified mutation. DNA sequencing revealed a novel heterozygous variant c.1421G>A in exon 8 of the FGB gene encoding a Bβ chain (p.Trp474Ter) in both patients. Clinical data from patients showed bleeding episodes. Protein modelling confirmed changes in the secondary structure of the molecule, with the loss of three β sheet arrangements. As expected by the low fibrinogen levels, turbidity analyses showed a reduced fibrin polymerisation and imaging difference in thickness fibrin fibers. We have to emphasize that our patients have a quantitative fibrinogen disorder; therefore, the reduced function is due to the reduced concentration of fibrinogen, since the Bβ chains carrying the mutation predicted to be retained inside the cell. The study of fibrinogen molecules using protein modelling may help us to understand causality and effect of novel genetic mutations
    corecore