21 research outputs found

    Photolipid excitation triggers depolarizing optocapacitive currents and action potentials

    Get PDF
    Optically-induced changes in membrane capacitance may regulate neuronal activity without requiring genetic modifications. Previously, they mainly relied on sudden temperature jumps due to light absorption by membrane-associated nanomaterials or water. Yet, nanomaterial targeting or the required high infrared light intensities obstruct broad applicability. Now, we propose a very versatile approach: photolipids (azobenzene-containing diacylglycerols) mediate light-triggered cellular de- or hyperpolarization. As planar bilayer experiments show, the respective currents emerge from millisecond-timescale changes in bilayer capacitance. UV light changes photolipid conformation, which awards embedding plasma membranes with increased capacitance and evokes depolarizing currents. They open voltage-gated sodium channels in cells, generating action potentials. Blue light reduces the area per photolipid, decreasing membrane capacitance and eliciting hyperpolarization. If present, mechanosensitive channels respond to the increased mechanical membrane tension, generating large depolarizing currents that elicit action potentials. Membrane self-insertion of administered photolipids and focused illumination allows cell excitation with high spatiotemporal control

    Continuous Flow Ozonolysis in a Laboratory Scale Reactor

    No full text

    Unusual behavior in the reactivity of 5-substituted-1H-tetrazoles in a resistively heated microreactor

    No full text
    The decomposition of 5-benzhydryl-1H-tetrazole in an N-methyl-2-pyrrolidone/acetic acid/water mixture was investigated under a variety of high-temperature reaction conditions. Employing a sealed Pyrex glass vial and batch microwave conditions at 240 °C, the tetrazole is comparatively stable and complete decomposition to diphenylmethane requires more than 8 h. Similar kinetic data were obtained in conductively heated flow devices with either stainless steel or Hastelloy coils in the same temperature region. In contrast, in a flow instrument that utilizes direct electric resistance heating of the reactor coil, tetrazole decomposition was dramatically accelerated with rate constants increased by two orders of magnitude. When 5-benzhydryl-1H-tetrazole was exposed to 220 °C in this type of flow reactor, decomposition to diphenylmethane was complete within 10 min. The mechanism and kinetic parameters of tetrazole decomposition under a variety of reaction conditions were investigated. A number of possible explanations for these highly unusual rate accelerations are presented. In addition, general aspects of reactor degradation, corrosion and contamination effects of importance to continuous flow chemistry are discussed

    Determinants of Lipid Domain Size

    No full text
    Lipid domains less than 200 nm in size may form a scaffold, enabling the concerted function of plasma membrane proteins. The size-regulating mechanism is under debate. We tested the hypotheses that large values of spontaneous monolayer curvature are incompatible with micrometer-sized domains. Here, we used the transition of photoswitchable lipids from their cylindrical conformation to a conical conformation to increase the negative curvature of a bilayer-forming lipid mixture. In contrast to the hypothesis, pre-existing micrometer-sized domains did not dissipate in our planar bilayers, as indicated by fluorescence images and domain mobility measurements. Elasticity theory supports the observation by predicting the zero free energy gain for splitting large domains into smaller ones. It also indicates an alternative size-determining mechanism: The cone-shaped photolipids reduce the line tension associated with lipid deformations at the phase boundary and thus slow down the kinetics of domain fusion. The competing influence of two approaching domains on the deformation of the intervening lipids is responsible for the kinetic fusion trap. Our experiments indicate that the resulting local energy barrier may restrict the domain size in a dynamic system

    Determinants of Lipid Domain Size

    No full text
    Lipid domains less than 200 nm in size may form a scaffold, enabling the concerted function of plasma membrane proteins. The size-regulating mechanism is under debate. We tested the hypotheses that large values of spontaneous monolayer curvature are incompatible with micrometer-sized domains. Here, we used the transition of photoswitchable lipids from their cylindrical conformation to a conical conformation to increase the negative curvature of a bilayer-forming lipid mixture. In contrast to the hypothesis, pre-existing micrometer-sized domains did not dissipate in our planar bilayers, as indicated by fluorescence images and domain mobility measurements. Elasticity theory supports the observation by predicting the zero free energy gain for splitting large domains into smaller ones. It also indicates an alternative size-determining mechanism: The cone-shaped photolipids reduce the line tension associated with lipid deformations at the phase boundary and thus slow down the kinetics of domain fusion. The competing influence of two approaching domains on the deformation of the intervening lipids is responsible for the kinetic fusion trap. Our experiments indicate that the resulting local energy barrier may restrict the domain size in a dynamic system

    Differential deregulation of astrocytic calcium signalling by amyloid-β, TNFα, IL-1β and LPS

    No full text
    In Alzheimer's disease (AD), astrocytes undergo complex morphological and functional changes that include early atrophy, reactive activation and Ca(2+) deregulation. Recently, we proposed a mechanism by which nanomolar A\u3b242 deregulates mGluR5 and InsP3 receptors, the key elements of astrocytic Ca(2+) signalling toolkit. To evaluate the specificity of these changes, we have now investigated whether the effects of A\u3b242 on Ca(2+) signalling machinery can be reproduced by pro-inflammatory agents (TNF\u3b1, IL-1\u3b2, LPS). Here we report that A\u3b242 (100nM, 72h) significantly increased mRNA levels of mGluR5, InsP3R1 and InsP3R2, whereas pro-inflammatory agents reduced expression of these specific mRNAs. Furthermore, DHPG-induced Ca(2+) signals and store operated Ca(2+) entry (SOCE) were augmented in A\u3b242-treated cells due to up-regulation of a set of Ca(2+) signalling-related genes including TRPC1 and TRPC4. Opposite changes were observed when astrocytes were treated with TNF\u3b1, IL-1\u3b2 and LPS. Last, the effects observed on SOCE by treating wild-type astrocytes with A\u3b242 were also identified in untreated astrocytes from 3 7Tg-AD animals, suggesting a link to the AD pathology. Our results demonstrate that effects of A\u3b242 on astrocytic Ca(2+) signalling differ from and may contrast to the effects of pro-inflammatory agents
    corecore