39 research outputs found
N-acetylcysteine serves as substrate of 3-mercaptopyruvate sulfurtransferase and stimulates sulfide metabolism in colon cancer cells
Hydrogen sulfide (H2S) is an endogenously produced signaling molecule. The enzymes 3-mercaptopyruvate sulfurtransferase (MST), partly localized in mitochondria, and the inner mitochondrial membrane-associated sulfide:quinone oxidoreductase (SQR), besides being respectively involved in the synthesis and catabolism of H2S, generate sulfane sulfur species such as persulfides and polysulfides, currently recognized as mediating some of the H2S biological effects. Reprogramming of H2S metabolism was reported to support cellular proliferation and energy metabolism in cancer cells. As oxidative stress is a cancer hallmark and N-acetylcysteine (NAC) was recently suggested to act as an antioxidant by increasing intracellular levels of sulfane sulfur species, here we evaluated the effect of prolonged exposure to NAC on the H2S metabolism of SW480 colon cancer cells. Cells exposed to NAC for 24 h displayed increased expression and activity of MST and SQR. Furthermore, NAC was shown to: (i) persist at detectable levels inside the cells exposed to the drug for up to 24 h and (ii) sustain H2S synthesis by human MST more effectively than cysteine, as shown working on the isolated recombinant enzyme. We conclude that prolonged exposure of colon cancer cells to NAC stimulates H2S metabolism and that NAC can serve as a substrate for human MST
The effects of different concentrations of the α2-Adrenoceptor Agonist Medetomidine on basal excitatory synaptic transmission and synaptic plasticity in hippocampal slices of adult mice
α2-Adrenoceptor agonists are used frequently in human and veterinary anesthesia as sedative/analgesic drugs. However, they can impair cognition. Little is known about the concentration-dependent effects of α2-adrenoceptor agonists on synaptic plasticity, the neurophysiological basis of learning and memory. Therefore, we investigated the effects of different concentrations of medetomidine, an α2-adrenoceptor agonist, on basal excitatory synaptic transmission and on 2 forms of synaptic plasticity: paired-pulse facilitation (PPF) and long-term potentiation (LTP).Funding: This work was supported by FCT (Lisbon, Portugal) and cofunded by COMPETE: 01-0124-FEDER-009497 (Lisbon, Portugal), through the project grants PTDC/CVT/099022/2008 and PTDC/SAU-NSC/122254/2010 and through a personal PhD grant (SFRH /BD/48883/2008) to Patrícia do Céu Oliveira Ribeiro and by QREN (09-68-ESR-FP-010).info:eu-repo/semantics/publishedVersio
Structure of full-length wild-type human phenylalanine hydroxylase by small angle X-ray scattering reveals substrate-induced conformational stability
Human phenylalanine hydroxylase (hPAH) hydroxylates l-phenylalanine (l-Phe) to l-tyrosine, a precursor for neurotransmitter biosynthesis. Phenylketonuria (PKU), caused by mutations in PAH that impair PAH function, leads to neurological impairment when untreated. Understanding the hPAH structural and regulatory properties is essential to outline PKU pathophysiological mechanisms. Each hPAH monomer comprises an N-terminal regulatory, a central catalytic and a C-terminal oligomerisation domain. To maintain physiological l-Phe levels, hPAH employs complex regulatory mechanisms. Resting PAH adopts an auto-inhibited conformation where regulatory domains block access to the active site. l-Phe-mediated allosteric activation induces a repositioning of the regulatory domains. Since a structure of activated wild-type hPAH is lacking, we addressed hPAH l-Phe-mediated conformational changes and report the first solution structure of the allosterically activated state. Our solution structures obtained by small-angle X-ray scattering support a tetramer with distorted P222 symmetry, where catalytic and oligomerisation domains form a core from which regulatory domains protrude, positioning themselves close to the active site entrance in the absence of l-Phe. Binding of l-Phe induces a large movement and dimerisation of regulatory domains, exposing the active site. Activated hPAH is more resistant to proteolytic cleavage and thermal denaturation, suggesting that the association of regulatory domains stabilises hPAH.publishe
Extraction of Biomolecules Using Phosphonium-Based Ionic Liquids + K3PO4 Aqueous Biphasic Systems
Aqueous biphasic systems (ABS) provide an alternative and efficient approach for the extraction, recovery and purification of biomolecules through their partitioning between two liquid aqueous phases. In this work, the ability of hydrophilic phosphonium-based ionic liquids (ILs) to form ABS with aqueous K3PO4 solutions was evaluated for the first time. Ternary phase diagrams, and respective tie-lines and tie-lines length, formed by distinct phosphonium-based ILs, water, and K3PO4 at 298 K, were measured and are reported. The studied phosphonium-based ILs have shown to be more effective in promoting ABS compared to the imidazolium-based counterparts with similar anions. Moreover, the extractive capability of such systems was assessed for distinct biomolecules (including amino acids, food colourants and alkaloids). Densities and viscosities of both aqueous phases, at the mass fraction compositions used for the biomolecules extraction, were also determined. The evaluated IL-based ABS have been shown to be prospective extraction media, particularly for hydrophobic biomolecules, with several advantages over conventional polymer-inorganic salt ABS
Stressor controllability modulates the stress response in fish
Background In humans the stress response is known to be modulated to a great extent by psychological factors, particularly by the predictability and the perceived control that the subject has of the stressor. This psychological dimension of the stress response has also been demonstrated in animals phylogenetically closer to humans (i.e. mammals). However, its occurrence in fish, which represent a divergent vertebrate evolutionary lineage from that of mammals, has not been established yet, and, if present, would indicate a deep evolutionary origin of these mechanisms across vertebrates. Moreover, the fact that psychological modulation of stress is implemented in mammals by a brain cortical top-down inhibitory control over subcortical stress-responsive structures, and the absence of a brain cortex in fish, has been used as an argument against the possibility of psychological stress in fish, with implications for the assessment of fish sentience and welfare. Here, we have investigated the occurrence of psychological stress in fish by assessing how stressor controllability modulates the stress response in European seabass (Dicentrarchus labrax). Results Fish were exposed to either a controllable or an uncontrollable stressor (i.e. possibility or impossibility to escape a signaled stressor). The effect of loss of control (possibility to escape followed by impossibility to escape) was also assessed. Both behavioral and circulating cortisol data indicates that the perception of control reduces the response to the stressor, when compared to the uncontrollable situation. Losing control had the most detrimental effect. The brain activity of the teleost homologues to the sensory cortex (Dld) and hippocampus (Dlv) parallels the uncontrolled and loss of control stressors, respectively, whereas the activity of the lateral septum (Vv) homologue responds in different ways depending on the gene marker of brain activity used. Conclusions These results suggest the psychological modulation of the stress response to be evolutionary conserved across vertebrates, despite being implemented by different brain circuits in mammals (pre-frontal cortex) and fish (Dld-Dlv)
Targeting Glutathione and Cystathionine β-Synthase in Ovarian Cancer Treatment by Selenium-Chrysin Polyurea Dendrimer Nanoformulation
The research was funded by iNOVA4Health UID/Multi/04462, a program financially supported by Fundação para a Ciência e Tecnologia/Ministério da Educação e Ciência (FCT-MCTES), through national funds, and co-funded by FEDER under the PT2020 Partnership Agreement. We also acknowledge funding from FCT-MCTES through project DREAM PTDC/MEC-ONC/29327/2017.Ovarian cancer is the main cause of death from gynecological cancer, with its poor prognosis mainly related to late diagnosis and chemoresistance (acquired or intrinsic) to conventional alkylating and reactive oxygen species (ROS)-generating drugs. We and others reported that the availability of cysteine and glutathione (GSH) impacts the mechanisms of resistance to carboplatin in ovarian cancer. Different players in cysteine metabolism can be crucial in chemoresistance, such as the cystine/glutamate antiporter system Xc (xCT) and the H2S-synthesizing enzyme cystathionine β-synthase (CBS) in the pathway of cysteine catabolism. We hypothesized that, by disrupting cysteine metabolic flux, chemoresistance would be reverted. Since the xCT transporter is also able to take up selenium, we used selenium-containing chrysin (SeChry) as a plausible competitive inhibitor of xCT. For that, we tested the effects of SeChry on three different ovarian cancer cell lines (ES2, OVCAR3, and OVCAR8) and in two non-malignant cell lines (HaCaT and HK2). Results showed that, in addition to being highly cytotoxic, SeChry does not affect the uptake of cysteine, although it increases GSH depletion, indicating that SeChry might induce oxidative stress. However, enzymatic assays revealed an inhibitory effect of SeChry toward CBS, thus preventing production of the antioxidant H2S. Notably, our data showed that SeChry and folate-targeted polyurea dendrimer generation four (SeChry@PUREG4-FA) nanoparticles increased the specificity for SeChry delivery to ovarian cancer cells, reducing significantly the toxicity against non-malignant cells. Collectively, our data support SeChry@PUREG4-FA nanoparticles as a targeted strategy to improve ovarian cancer treatment, where GSH depletion and CBS inhibition underlie SeChry cytotoxicity.publishersversionpublishe
The multifaceted roles of sulfane sulfur species in cancer-associated processes
Sulfane sulfur species comprise a variety of biologically relevant hydrogen sulfide (H2S)-derived species, including per- and poly-sulfidated low molecular weight compounds and proteins. A growing body of evidence suggests that H2S, currently recognized as a key signaling molecule in human physiology and pathophysiology, plays an important role in cancer biology by modulating cell bioenergetics and contributing to metabolic reprogramming. This is accomplished through functional modulation of target proteins via H2S binding to heme iron centers or H2S-mediated reversible per- or poly-sulfidation of specific cysteine residues. Since sulfane sulfur species are increasingly viewed not only as a major source of H2S but also as key mediators of some of the biological effects commonly attributed to H2S, the multifaceted role of these species in cancer biology is reviewed here with reference to H2S, focusing on their metabolism, signaling function, impact on cell bioenergetics and anti-tumoral properties
Reaction of Corroles with Sarcosine and Paraformaldehyde: A New Facet of Corrole Chemistry
Details on the unexpected formation of two new (dimethylamino)methyl corrole isomers from the reaction of 5,10,15-tris(pentafluorophenyl)corrolatogallium(III) with sarcosine and paraformaldehyde are presented. Semi-empirical calculations on possible mechanism pathways seem to indicate that the new compounds are probably formed through a Mannich-type reaction. The extension of the protocol to the free-base 5,10,15-tris(pentafluorophenyl)corrole afforded an unexpected new seven-membered ring corrole derivative, confirming the peculiar behavior of corroles towards known reactions when compared to the well-behaved porphyrin counterparts
Modulation of human phenylalanine hydroxylase by 3-hydroxyquinolin-2(1h)-one derivatives
Funding Information: We are grateful to Cristina Leit?o (ITQB-NOVA) for expert technical assistance on the HPLC assays. We thank the Diamond Light Source for access to beamline B21 (proposal mx20161) and the technical support from Katsuaki Inoue, that contributed to the results presented here.This work was supported by FEDER and Funda??o para a Ci?ncia e a Tecnologia, I. P. through national funds (Projects UIDB/04138/2020 and UIDP/04138/2020 and research project PTDC/MED-QUI/29712/2017). This work has received funding from the European Union?s Horizon 2020 research and innovation programme under the Marie-Sklodowska Curie grant agreement No [675007], LISBOA-01-0145-FEDER-029967 and PTDC/QUI-QOR/29967/2017. Principal Researcher grant CEECIND/03143/2017 (Funda??o para a Ci?ncia e a Tecnologia) is acknowledged by L.M.D.G. European Union?s Horizon 2020 research and innovation programme (grant agreement No 810856) is acknowledged by M.T. iNOVA4Health Research Unit (LISBOA-01-0145-FEDER-007344), which is cofunded by Funda??o para a Ci?ncia e a Tecnologia/Minist?rio da Ci?ncia, Tecnologia e Ensino Superior, through national funds, and by FEDER under the PT2020 Partnership Agreement, is acknowledged by J.B.V. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.Phenylketonuria (PKU) is a genetic disease caused by deficient activity of human pheny-lalanine hydroxylase (hPAH) that, when untreated, can lead to severe psychomotor impairment. Protein misfolding is recognized as the main underlying pathogenic mechanism of PKU. Therefore, the use of stabilizers of protein structure and/or activity is an attractive therapeutic strategy for this condition. Here, we report that 3-hydroxyquinolin-2(1H)-one derivatives can act as protectors of hPAH enzyme activity. Electron paramagnetic resonance spectroscopy demonstrated that the 3-hydroxyquinolin-2(1H)-one compounds affect the coordination of the non-heme ferric center at the enzyme active-site. Moreover, surface plasmon resonance studies showed that these stabilizing compounds can be outcompeted by the natural substrate L-phenylalanine. Two of the designed compounds functionally stabilized hPAH by maintaining protein activity. This effect was observed on the recombinant purified protein and in a cellular model. Besides interacting with the catalytic iron, one of the compounds also binds to the N-terminal regulatory domain, although to a different location from the allosteric L-Phe binding site, as supported by the solution structures obtained by small-angle X-ray scattering.publishersversionpublishe
Multicharged Phthalocyanines as Selective Ligands for G-Quadruplex DNA Structures
The stabilization of G-Quadruplex DNA structures by ligands is a promising strategy for telomerase inhibition in cancer therapy since this enzyme is responsible for the unlimited proliferation of cancer cells. To assess the potential of a compound as a telomerase inhibitor, selectivity for quadruplex over duplex DNA is a fundamental attribute, as the drug must be able to recognize quadruplex DNA in the presence of a large amount of duplex DNA, in the cellular nucleus. By using different spectroscopic techniques, such as ultraviolet-visible, fluorescence and circular dichroism, this work evaluates the potential of a series of multicharged phthalocyanines, bearing four or eight positive charges, as G-Quadruplex stabilizing ligands. This work led us to conclude that the existence of a balance between the number and position of the positive charges in the phthalocyanine structure is a fundamental attribute for its selectivity for G-Quadruplex structures over duplex DNA structures. Two of the studied phthalocyanines, one with four peripheral positive charges (ZnPc1) and the other with less exposed eight positive charges (ZnPc4) showed high selectivity and affinity for G-Quadruplex over duplex DNA structures and were able to accumulate in the nucleus of UM-UC-3 bladder cancer cells