657 research outputs found
The Relationship Between Interleukin-6 in Saliva, Venous and Capillary Plasma, at Rest and in Response to Exercise
IL-6 plays a mechanistic role in conditions such as metabolic syndrome, chronic fatigue syndrome and clinical depression and also plays a major role in inflammatory and immune responses to exercise. The purpose of this study was to investigate the levels of resting and post exercise IL-6 when measured in venous plasma, saliva and capillary plasma. Five male and five females completed 2 separate exercise trials, both of which involved standardized exercise sessions on a cycle ergometer. Venous blood and saliva samples were taken immediately before and after Trial A, venous and capillary blood samples were taken immediately before and after Trial B. IL-6 values were obtained using a high-sensitivity enzyme-linked immunosorbent assay (ELISA). In Trial A venous plasma IL-6 increased significantly from 0.4. 0.14. pg/ml to 0.99 0.29. pg/ml (. P<. 0.01) while there was no increase in salivary IL-6. Venous plasma and salivary IL-6 responses were not correlated at rest, post exercise or when expressed as an exercise induced change. In Trial B venous and capillary plasma IL-6 increased significantly (venous: 0.22. ±. 0.18 to 0.74. ±. 0.28. pg/ml; capillary: 0.37. ±. 0.22 to 1.08. ±. 0.30. pg/ml (. P<. 0.01). Venous and capillary plasma responses did not correlate at rest (. r=. 0.59, P=. 0.07) but did correlate post exercise (. r=. 0.79) and when expressed as an exercise induced change (. r=. 0.71, P=. 0.02). Saliva does not appear to reflect systemic IL-6 responses, either at rest or in response to exercise. Conversely, capillary plasma responses are reflective of systemic IL-6 responses to exercise. © 2014 Elsevier Ltd
Blue cone monochromacy: causative mutations and associated phenotypes.
PurposeTo perform a phenotypic assessment of members of three British families with blue cone monochromatism (BCM), and to determine the underlying molecular genetic basis of disease.MethodsAffected members of three British families with BCM were examined clinically and underwent detailed electrophysiological and psychophysical testing. Blood samples were taken for DNA extraction. Molecular analysis involved the amplification of the coding regions of the long (L) and medium (M) wave cone opsin genes and the upstream locus control region (LCR) by polymerase chain reaction (PCR). Gene products were directly sequenced and analyzed.ResultsIn all three families, genetic analysis identified that the underlying cause of BCM involved an unequal crossover within the opsin gene array, with an inactivating mutation. Family 1 had a single 5'-L-M-3' hybrid gene, with an inactivating Cys203Arg (C203R) mutation. Family 3 had an array composed of a C203R inactivated 5'-L-M-3' hybrid gene followed by a second inactive gene. Families 1 and 3 had typical clinical, electrophysiological, and psychophysical findings consistent with stationary BCM. A novel mutation was detected in Family 2 that had a single hybrid gene lacking exon 2. This family presented clinical and psychophysical evidence of a slowly progressive phenotype.ConclusionsTwo of the BCM-causing family genotypes identified in this study comprised different hybrid genes, each of which contained the commonly described C203R inactivating mutation. The genotype in the family with evidence of a slowly progressive phenotype represents a novel BCM mutation. The deleted exon 2 in this family is not predicted to result in a shift in the reading frame, therefore we hypothesize that an abnormal opsin protein product may accumulate and lead to cone cell loss over time. This is the first report of slow progression associated with this class of mutation in the L or M opsin genes in BCM
The neural correlates of emotion regulation by implementation intentions
Several studies have investigated the neural basis of effortful emotion regulation (ER) but the neural basis of automatic ER has been less comprehensively explored. The present study investigated the neural basis of automatic ER supported by ‘implementation intentions’. 40 healthy participants underwent fMRI while viewing emotion-eliciting images and used either a previously-taught effortful ER strategy, in the form of a goal intention (e.g., try to take a detached perspective), or a more automatic ER strategy, in the form of an implementation intention (e.g., “If I see something disgusting, then I will think these are just pixels on the screen!”), to regulate their emotional response. Whereas goal intention ER strategies were associated with activation of brain areas previously reported to be involved in effortful ER (including dorsolateral prefrontal cortex), ER strategies based on an implementation intention strategy were associated with activation of right inferior frontal gyrus and ventro-parietal cortex, which may reflect the attentional control processes automatically captured by the cue for action contained within the implementation intention. Goal intentions were also associated with less effective modulation of left amygdala, supporting the increased efficacy of ER under implementation intention instructions, which showed coupling of orbitofrontal cortex and amygdala. The findings support previous behavioural studies in suggesting that forming an implementation intention enables people to enact goal-directed responses with less effort and more efficiency
Diphthamide modification of eEF2 requires a J-domain protein and is essential for normal development
The intracellular target of diphtheria toxin is a modified histidine residue, diphthamide, in the translation elongation factor, eEF2. This enigmatic modification occurs in all eukaryotes, and is produced in yeast by the action of five gene products, DPH1 to DPH5. Sequence homologues of these genes are present in all sequenced eukaryotic genomes and in higher eukaryotes there is functional evidence for DPH1, 2, 3, and 5 acting in diphthamide biosynthesis. We have identified a mouse mutant in the remaining gene, Dph4. Cells derived from homozygous mutant embryos lack the diphthamide modification of EF2 and are resistant to killing by diphtheria toxin. Reporter-tagged DPH4 protein localizes to the cytoskeleton, in contrast to the localization of DPH1, and consistent with evidence that DPH4 is not part of a proposed complex containing DPH1, 2 and 3. Mice homozygous for the mutation are retarded in growth and development and almost always die before birth. Those that survive long enough have preaxial polydactyly, a duplication of digit 1 of the hind foot. This same defect is seen in embryos homozygous for mutation of DPH1, suggesting that lack of diphthamide on eEF2 could result in translational failure of specific proteins, rather than a generalized translation downregulation
Threonine 57 is required for the post-translational activation of Escherichia coli aspartate α-decarboxylase.
Aspartate α-decarboxylase is a pyruvoyl-dependent decarboxylase required for the production of β-alanine in the bacterial pantothenate (vitamin B5) biosynthesis pathway. The pyruvoyl group is formed via the intramolecular rearrangement of a serine residue to generate a backbone ester intermediate which is cleaved to generate an N-terminal pyruvoyl group. Site-directed mutagenesis of residues adjacent to the active site, including Tyr22, Thr57 and Tyr58, reveals that only mutation of Thr57 leads to changes in the degree of post-translational activation. The crystal structure of the site-directed mutant T57V is consistent with a non-rearranged backbone, supporting the hypothesis that Thr57 is required for the formation of the ester intermediate in activation
Identification of Faba bean genetic loci associated with quantitative resistance to the fungus Botrytis fabae, causal agent of chocolate spot
Introduction: Chocolate spot, caused by the ascomycete fungus Botrytis fabae, is a devastating foliar disease and a major constraint on the quality and yield of faba beans (Vicia faba). The use of fungicides is the primary strategy for controlling the disease. However, high levels of partial genetic resistance have been identified and can be exploited to mitigate the disease. Methods: The partially resistant V. faba cultivar Maris Bead and susceptible Egyptian accession ig70726 were crossed, and a genetic mapping population of 184 individuals was genotyped in the F2 generation and screened for resistance to B. fabae infection in the F3, F5, and F6 generations in a series of field experiments. A high-density linkage map of V. faba containing 3897 DArT markers spanning 1713.7 cM was constructed. Results: Multiple candidate quantitative trait loci (QTLs) in 11 separate regions of the V. faba genome were identified; some on chromosomes 2, 3, and 6 overlapped with loci previously linked to resistance to Ascochyta leaf and pod blight caused by the necrotrophic fungus Ascochyta fabae. A transcriptomics experiment was conducted at 18 h post-inoculation in seedlings of both parents of the mapping population, identifying several differentially expressed transcripts potentially involved in early stage defence against B. fabae, including cell-wall associated protein kinases, NLR genes, and genes involved in metabolism and response to reactive oxygen species. Discussion: This study identified several novel candidate QTLs in the V. faba genome that contribute to partial resistance to chocolate spot, but differences between growing seasons highlighted the importance of multi-year phenotyping experiments when searching for candidate QTLs for partial resistance
A New Population of High Redshift, Dusty Lyman-Alpha Emitters and Blobs Discovered by WISE
We report a new technique to select 1.6<z<4.6 dusty Lyman-alpha emitters
(LAEs), over a third of which are `blobs' (LABs) with emission extended on
scales of 30-100kpc. Combining data from the NASA Wide-field Infrared Survey
Explorer (WISE) mission with optical spectroscopy from the W.M. Keck telescope,
we present a color criteria that yields a 78% success rate in identifying rare,
dusty LAEs of which at least 37% are LABs. The objects have a surface density
of only ~0.1 per square degree, making them rare enough that they have been
largely missed in narrow surveys. We measured spectroscopic redshifts for 92 of
these WISE-selected, typically radio-quiet galaxies and find that the LAEs
(LABs) have a median redshift of 2.3 (2.5). The WISE photometry coupled with
data from Herschel reveals that these galaxies have extreme far-infrared
luminosities (L_IR>10^{13-14}L_sun) and warm colors, typically larger than
submillimeter-selected galaxies (SMGs) and dust-obscured galaxies (DOGs). These
traits are commonly associated with the dust being energized by intense AGN
activity. We hypothesize that the combination of spatially extended
Lyman-alpha, large amounts of warm IR-luminous dust, and rarity (implying a
short-lived phase) can be explained if the galaxies are undergoing strong
`feedback' transforming them from an extreme dusty starburst to a QSO.Comment: Submitted to ApJ Letters, 6 pages, 4 figures. Comments welcom
Vitamin D and SARS-Co V-2 virus/COVID-19 disease
Summary for social mediaVitamin D is essential for good health, especially bone and muscle health. Many people have low blood levels of vitamin D, especially in winter or if confined indoors, because summer sunshine is the main source of vitamin D for most people. Government vitamin D intake recommendations for the general population are 400 IU (10 µg) per day for the UK7 and 600 IU (15 µg) per day for the USA (800 IU (20 µg) per day for >70 years) and the EU.9 Taking a daily supplement (400 IU /day (10 µg/day) in the UK) and eating foods that provide vitamin D is particularly important for those self-isolating with limited exposure to sunlight. Vitamin D intakes greater than the upper limit of 4000 IU (100 µg) per day may be harmful and should be avoided unless under personal medical/clinical advice by a qualified health professional
Factors that shape pedagogical practices in next generation learning spaces
International figures on university expenditure on the development of next generation learning spaces (NGLS) are not readily available but anecdote suggests that simply retrofitting an existing classroom as an NGLS conservatively costs $AUD200,000, while developing new buildings often cost in the region of 100 million dollars and over the last five years, many universities in Australia, Europe and North America have developed new buildings. Despite this considerable investment, it appears that the full potential of these spaces is not being realised. While researchers argue that a more student centred learning approach to teaching has inspired the design of next generation learning spaces (Tom, Voss, & Scheetz, 2008) and that changed spaces change practice (Joint Information Systems Committee, 2009) when 'confronted' with a next generation learning spaces for the first time, anecdotes suggest that many academics resort to teaching as they have always taught and as they were taught. This chapter highlights factors that influence teaching practices, showing that they are to be found in the external, organisational and personal domains. We argue that in order to fully realise significant improvements in student outcomes through the sector's investment in next generation learning spaces, universities need to provide holistic and systematic support across three domains - the external, the organisational and the personal domains, by changing policies, systems, procedures and localised practices to better facilitate changes in teaching practices that maximise the potential of next generation learning spaces
- …