3 research outputs found

    Spatial Evolutionary Generative Adversarial Networks

    Get PDF
    Generative adversary networks (GANs) suffer from training pathologies such as instability and mode collapse. These pathologies mainly arise from a lack of diversity in their adversarial interactions. Evolutionary generative adversarial networks apply the principles of evolutionary computation to mitigate these problems. We hybridize two of these approaches that promote training diversity. One, E-GAN, at each batch, injects mutation diversity by training the (replicated) generator with three independent objective functions then selecting the resulting best performing generator for the next batch. The other, Lipizzaner, injects population diversity by training a two-dimensional grid of GANs with a distributed evolutionary algorithm that includes neighbor exchanges of additional training adversaries, performance based selection and population-based hyper-parameter tuning. We propose to combine mutation and population approaches to diversity improvement. We contribute a superior evolutionary GANs training method, Mustangs, that eliminates the single loss function used across Lipizzaner's grid. Instead, each training round, a loss function is selected with equal probability, from among the three E-GAN uses. Experimental analyses on standard benchmarks, MNIST and CelebA, demonstrate that Mustangs provides a statistically faster training method resulting in more accurate networks

    Data augmentation for time series: traditional vs generative models on capacitive proximity time series

    No full text
    Large labeled quantities and diversities of training data are often needed for supervised, data-based modelling. Data distribution should cover a rich representation to support the generalizability of the trained end-to-end inference model. However, this is often hindered by limited labeled data and the expensive data collection process, especially for human activity recognition tasks. Extensive manual labeling is required. Data augmentation is thus a widely used regularization method for deep learning, especially applied on image data to increase the classification accuracy. But it is less researched for time series. In this paper, we investigate the data augmentation task on continuous capacitive time series with the example on exercise recognition. We show that the traditional data augmentation can enrich the source distribution and thus make the trained inference model more generalized. This further increases the recognition performance for unseen target data around 21.4 percentage points compared to inference model without data augmentation. The generative models such as variational autoencoder or conditional variational autoencoder can further reduce the variance on the target data

    A Survey of Unsupervised Deep Domain Adaptation

    No full text
    corecore