23 research outputs found

    Sex-different and growth hormone-regulated expression of microRNA in rat liver

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are short non-coding RNAs playing an important role in post-transcriptional regulation of gene expression. We have previously shown that hepatic transcript profiles are different between males and females; that some of these differences are under the regulation of growth hormone (GH); and that mild starvation diminishes some of the differences. In this study, we tested if hepatic miRNAs are regulated in a similar manner.</p> <p>Results</p> <p>Using microarrays, miRNA screening was performed to identify sex-dependent miRNAs in rat liver. Out of 324 unique probes on the array, 254 were expressed in the liver and eight (3% of 254) of those were found to be different between the sexes. Among the eight putative sex-different miRNAs, only one female-predominant miRNA (miR-29b) was confirmed using quantitative real-time PCR. Furthermore, 1 week of continuous GH-treatment in male rats reduced the levels of miR-451 and miR-29b, whereas mild starvation (12 hours) raised the levels of miR-451, miR-122a and miR-29b in both sexes. The biggest effects were obtained on miR-29b with GH-treatment.</p> <p>Conclusion</p> <p>We conclude that hepatic miRNA levels depend on the hormonal and nutritional status of the animal and show that miR-29b is a female-predominant and GH-regulated miRNA in rat liver.</p

    Sex-different hepaticglycogen content and glucose output in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genes involved in hepatic metabolism have a sex-different expression in rodents. To test whether male and female rat livers differ regarding lipid and carbohydrate metabolism, whole-genome transcript profiles were generated and these were complemented by measurements of hepatic lipid and glycogen content, fatty acid (FA) oxidation rates and hepatic glucose output (HGO). The latter was determined in perfusates from <it>in situ </it>perfusion of male and female rat livers. These perfusates were also analysed using nuclear magnetic resonance (NMR) spectroscopy to identify putative sex-differences in other liver-derived metabolites. Effects of insulin were monitored by analysis of Akt-phosphorylation, gene expression and HGO after s.c. insulin injections.</p> <p>Results</p> <p>Out of approximately 3 500 gene products being detected in liver, 11% were significantly higher in females, and 11% were higher in males. Many transcripts for the production of triglycerides (TG), cholesterol and VLDL particles were female-predominant, whereas genes for FA oxidation, gluconeogenesis and glycogen synthesis were male-predominant. Sex-differences in mRNA levels related to metabolism were more pronounced during mild starvation (12 h fasting), as compared to the postabsorptive state (4 h fasting). No sex-differences were observed regarding hepatic TG content, FA oxidation rates or blood levels of ketone bodies or glucose. However, males had higher hepatic glycogen content and higher HGO, as well as higher ratios of insulin to glucagon levels. Based on NMR spectroscopy, liver-derived lactate was also higher in males. HGO was inhibited by insulin in parallel with increased phosphorylation of Akt, without any sex-differences in insulin sensitivity. However, the degree of Thr172-phosphorylated AMP kinase (AMPK) was higher in females, indicating a higher degree of AMPK-dependent actions.</p> <p>Conclusions</p> <p>Taken together, males had higher ratios of insulin to glucagon levels, higher levels of glycogen, lower degree of AMPK phosphorylation, higher expression of gluconeogenic genes and higher hepatic glucose output. Possibly these sex-differences reflect a higher ability for the healthy male rat liver to respond to increased energy demands.</p

    Exploring hepatic hormone actions using a compilation of gene expression profiles

    Get PDF
    BACKGROUND: Microarray analysis is attractive within the field of endocrine research because regulation of gene expression is a key mechanism whereby hormones exert their actions. Knowledge discovery and testing of hypothesis based on information-rich expression profiles promise to accelerate discovery of physiologically relevant hormonal mechanisms of action. However, most studies so-far concentrate on the analysis of actions of single hormones and few examples exist that attempt to use compilation of different hormone-regulated expression profiles to gain insight into how hormone act to regulate tissue physiology. This report illustrates how a meta-analysis of multiple transcript profiles obtained from a single tissue, the liver, can be used to evaluate relevant hypothesis and discover novel mechanisms of hormonal action. We have evaluated the differential effects of Growth Hormone (GH) and estrogen in the regulation of hepatic gender differentiated gene expression as well as the involvement of sterol regulatory element-binding proteins (SREBPs) in the hepatic actions of GH and thyroid hormone. RESULTS: Little similarity exists between liver transcript profiles regulated by 17-α-ethinylestradiol and those induced by the continuos infusion of bGH. On the other hand, strong correlations were found between both profiles and the female enriched transcript profile. Therefore, estrogens have feminizing effects in male rat liver which are different from those induced by GH. The similarity between bGH and T3 were limited to a small group of genes, most of which are involved in lipogenesis. An in silico promoter analysis of genes rapidly regulated by thyroid hormone predicted the activation of SREBPs by short-term treatment in vivo. It was further demonstrated that proteolytic processing of SREBP1 in the endoplasmic reticulum might contribute to the rapid actions of T3 on these genes. CONCLUSION: This report illustrates how a meta-analysis of multiple transcript profiles can be used to link knowledge concerning endocrine physiology to hormonally induced changes in gene expression. We conclude that both GH and estrogen are important determinants of gender-related differences in hepatic gene expression. Rapid hepatic thyroid hormone effects affect genes involved in lipogenesis possibly through the induction of SREBP1 proteolytic processing

    Immunohistochemical analysis of cannabinoid receptor 1 expression in steatotic rat livers

    No full text
    The primary aim of the present study was to determine the expression levels of cannabinoid receptor type 1 (CB1) in steatotic rat livers. The secondary aim was to clarify whether steatosis and inflammation are more marked in areas with increased CB1 overexpression. For ethical and economic reasons, the present study investigated tissue from archived liver blocks, which were obtained from 38 rats that had been euthanized during the course of previous research at the Karolinska Institute of the Karolinska University Hospital (Stockholm, Sweden) and Lund University (Malmö, Sweden). Liver tissue fixed in formalin and embedded in paraffin was used that had been sourced from 36 male Sprague Dawley rats (age, 7 weeks) and 2 rats (age, 180 days) lacking normal leptin receptors. The rat liver tissue was stained with antibodies against CB1 and counterstained with hematoxylin. The expression of CB1 and the number of cells overexpressing CB1 were determined. Steatosis was scored according to the Dixon scoring system. CB1 overexpression and steatosis were detected in hepatocytes from all 38 livers sampled. The expression of CB1 was more marked in hepatocytes localized next to portal triads. Near the central veins, the expression was significantly weaker. Steatosis was more marked in areas of increased CB1 overexpres with publications reporting that CB1 in hepatocytes increases lipogenesis and contributes to inflammation

    Gene expression profile of the aging process in rat liver: Normalizing effects of growth hormone replacement

    No full text
    The mechanisms that control life span and age-related phenotypes are not well understood. It has been suggested that aging or at least some of its symptoms are related to a physiological decline in GH levels with age. To test this hypothesis, and to improve our understanding of the cellular and molecular mechanisms behind the aging process, we have analyzed age-induced changes in gene expression patterns through the application of DNA chip technology. In the present study, the aging process was analyzed in rat liver in the presence or absence of GH replacement. Out of 3,000 genes printed on the microarrays, approximately 1,000 were detected in the rat liver. Among these, 47 unique transcripts were affected by the aging process in male rat livers. The largest groups of age-regulated transcripts encoded proteins involved in intermediary metabolism, mitochondrial respiration, and drug metabolism. Approximately 40% of the differentially expressed gene products were normalized after GH treatment. The majority of those transcripts have previously not been shown to be under GH control. The list of gene products that showed normalized expression levels in GH-treated old rats may shed further insight on the action and mechanism behind the positive effects of GH on, for example, fuel metabolism and body composition observed in different animal and human studies

    Growth hormone-mediated alteration of fuel metabolism in the aged rat as determined from transcript profiles

    No full text
    Age-related changes in body composition and serum lipids resemble symptoms of adult-onset growth hormone (GH) deficiency. GH treatment has been shown to normalize these changes in both GH-deficient adult patients and elderly subjects. The aim of this study was to identify GH-responsive genes that might mediate positive effects of GH treatment on fuel metabolism and body composition. cDNA microarrays were used to analyze age- and GH-induced changes in gene expression patterns in male rats. Tissues analyzed were liver, adipose tissue, and skeletal muscle from animals on or off GH treatment. A value of 1.5 was chosen to denote differences (increased or decreased expression) in the level of mRNA expression. In the liver, 7.3% of the expressed genes were affected by age and 6.5% by GH. Similar values for the other tissues were 8.3% and 5.3% (fat), and 7.9% and 9.6% (muscle), respectively. Among the differentially expressed genes, we identified several that encode proteins involved in fuel metabolism. Old rats were shown to have induced expression of genes involved in hepatic glucose oxidation and lipid synthesis, whereas these pathways were reduced in adipose tissue. GH treatment induced the expression of genes for lipid oxidation in liver and for glucose oxidation in skeletal muscle. In adipose tissue, GH reduced the expression of genes involved in lipogenesis even further. Changes in transcript levels were reflected in serum in terms of altered lipid profiles. Serum levels of triglycerides, high-density lipoprotein (HDL) cholesterol, and total cholesterol were higher in the old animals than in the young and normalized by GH treatment
    corecore