2 research outputs found

    Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft

    No full text
    In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale Bayesian networks by composition. This compositional approach reflects how (often redundant) subsystems are architected to form systems such as electrical power systems. We develop high-level specifiations, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems. The largest among these 24 Bayesian networks contains over 1,000 random variables. Another BN represents the real-world electrical power system ADAPT, which is representative of electrical power systems deployed in aerospace vehicles. In addition to demonstrating the scalability of the compositional approach, we briefly report on experimental results from the diagnostic competition DXC, where the ProADAPT team, using techniques discussed here, obtained the highest scores in both Tier 1 (among 9 international competitors) and Tier 2 (among 6 international competitors) of the industrial track. While we consider diagnosis of power systems specifially, we believe this work is relevant to other system health management problems, in particular in dependable systems such as aircraft and spacecraft

    A Framework for Systematic Benchmarking of Monitoring and Diagnostic Systems

    No full text
    In this paper, we present an architecture and a formal framework to be used for systematic benchmarking of monitoring and diagnostic systems and for producing comparable performance assessments of different diagnostic technologies. The framework defines a number of standardized specifications, which include a fault catalog, a library of modular test scenarios, and a common protocol for gathering and processing diagnostic data. At the center of the framework are 13 benchmarking metric definitions. The calculation of metrics is illustrated on a probabilistic model-based diagnosis algorithms utilizing Bayesian reasoning techniques. The diagnosed system is a real-world electrical power system, namely the Advanced Diagnostics and Prognostics Testbed (ADAPT) developed and located at the NASA Ames Research Center. The proposed benchmarking approach shows how to generate realistic diagnostic data sets for large-scale, complex engineering systems, and how the generated experimental data can be used to enable "apples to apples" assessments of the effectiveness of different diagnostics and monitoring algorithms
    corecore