634 research outputs found

    Group quantization of parametrized systems II. Pasting Hilbert spaces

    Full text link
    The method of group quantization described in the preceeding paper I is extended so that it becomes applicable to some parametrized systems that do not admit a global transversal surface. A simple completely solvable toy system is studied that admits a pair of maximal transversal surfaces intersecting all orbits. The corresponding two quantum mechanics are constructed. The similarity of the canonical group actions in the classical phase spaces on the one hand and in the quantum Hilbert spaces on the other hand suggests how the two Hilbert spaces are to be pasted together. The resulting quantum theory is checked to be equivalent to that constructed directly by means of Dirac's operator constraint method. The complete system of partial Hamiltonians for any of the two transversal surfaces is chosen and the quantum Schr\"{o}dinger or Heisenberg pictures of time evolution are constructed.Comment: 35 pages, latex, no figure

    Quantizations on the circle and coherent states

    Full text link
    We present a possible construction of coherent states on the unit circle as configuration space. Our approach is based on Borel quantizations on S^1 including the Aharonov-Bohm type quantum description. The coherent states are constructed by Perelomov's method as group related coherent states generated by Weyl operators on the quantum phase space Z x S^1. Because of the duality of canonical coordinates and momenta, i.e. the angular variable and the integers, this formulation can also be interpreted as coherent states over an infinite periodic chain. For the construction we use the analogy with our quantization and coherent states over a finite periodic chain where the quantum phase space was Z_M x Z_M. The coherent states constructed in this work are shown to satisfy the resolution of unity. To compare them with canonical coherent states, also some of their further properties are studied demonstrating similarities as well as substantial differences.Comment: 15 pages, 4 figures, accepted in J. Phys. A: Math. Theor. 45 (2012) for the Special issue on coherent states: mathematical and physical aspect

    Coherent states on the circle

    Full text link
    We present a possible construction of coherent states on the unit circle as configuration space. In our approach the phase space is the product Z x S^1. Because of the duality of canonical coordinates and momenta, i.e. the angular variable and the integers, this formulation can also be interpreted as coherent states over an infinite periodic chain. For the construction we use the analogy with our quantization over a finite periodic chain where the phase space was Z_M x Z_M. Properties of the coherent states constructed in this way are studied and the coherent states are shown to satisfy the resolution of unity.Comment: 7 pages, presented at GROUP28 - "28th International Colloquium on Group Theoretical Methods in Physics", Newcastle upon Tyne, July 2010. Accepted in Journal of Physics Conference Serie

    Dihedral symmetry of periodic chain: quantization and coherent states

    Full text link
    Our previous work on quantum kinematics and coherent states over finite configuration spaces is extended: the configuration space is, as before, the cyclic group Z_n of arbitrary order n=2,3,..., but a larger group - the non-Abelian dihedral group D_n - is taken as its symmetry group. The corresponding group related coherent states are constructed and their overcompleteness proved. Our approach based on geometric symmetry can be used as a kinematic framework for matrix methods in quantum chemistry of ring molecules.Comment: 13 pages; minor changes of the tex

    Curvature Dependent Diffusion Flow on Surface with Thickness

    Full text link
    Particle diffusion in a two dimensional curved surface embedded in R3R_3 is considered. In addition to the usual diffusion flow, we find a new flow with an explicit curvature dependence. New diffusion equation is obtained in ϵ\epsilon (thickness of surface) expansion. As an example, the surface of elliptic cylinder is considered, and curvature dependent diffusion coefficient is calculated.Comment: 8 pages, 8 figures, Late
    corecore