44 research outputs found

    Quaternary structure of LOV-domain containing polypeptide of Arabidopsis FKF1 protein

    Get PDF
    AbstractFlavin-binding, Kelch repeat, F-box (FKF1) protein is a photoreceptor to regulate flowering of Arabidopsis. The protein has a light, oxygen and voltage (LOV)-sensing domain binding a flavin mononucleotide. The photo-activation of the domain is an indispensable step to initiate the cellular signaling for flowering. In the present study, a LOV-containing polypeptide of FKF1 was prepared by an overexpression system, and the quaternary structure of it was studied by size exclusion chromatography and small-angle X-ray scattering. The apparent molecular weight from chromatography suggested a globular trimeric or an anisotropic-shaped dimeric association of the polypeptide in solution. The scattering experiment demonstrated a dimeric association of the polypeptides with an elongated molecular shape displaying the radius of gyration of 27Å and the maximum dimension of 94Å. The molecular shape simulated from scattering profiles suggests an antiparallel association of the LOV domains in the dimer. Though the absorption spectrum of blue-light irradiated polypeptide was stable in the photoactivated state for a long period, the scattering profiles showed very small changes between the dark and light conditions. Based on the homologies in the amino-acid sequences and the scattering profiles, these results are discussed in connection with the structures and function of LOV domains of phototropin

    Mutations in N-terminal flanking region of blue light-sensing light-oxygen and voltage 2 (LOV2) domain disrupt its repressive activity on kinase domain in the Chlamydomonas phototropin.

    Get PDF
    Phototropin is a light-regulated kinase that mediates a variety of photoresponses such as phototropism, chloroplast positioning, and stomata opening in plants to increase the photosynthetic efficiency. Blue light stimulus first induces local conformational changes in the chromophore-bearing light-oxygen and voltage 2 (LOV2) domain of phototropin, which in turn activates the serine/threonine (Ser/Thr) kinase domain in the C terminus. To examine the kinase activity of full-length phototropin conventionally, we employed the budding yeast Saccharomyces cerevisiae. In this organism, Ser/Thr kinases (Fpk1p and Fpk2p) that show high sequence similarity to the kinase domain of phototropins exist. First, we demonstrated that the phototropin from Chlamydomonas reinhardtii (CrPHOT) could complement loss of Fpk1p and Fpk2p to allow cell growth in yeast. Furthermore, this reaction was blue light-dependent, indicating that CrPHOT was indeed light-activated in yeast cells. We applied this system to a large scale screening for amino acid substitutions in CrPHOT that elevated the kinase activity in darkness. Consequently, we identified a cluster of mutations located in the N-terminal flanking region of LOV2 (R199C, L202L, D203N/G/V, L204P, T207I, and R210H). An in vitro phosphorylation assay confirmed that these mutations substantially reduced the repressive activity of LOV2 on the kinase domain in darkness. Furthermore, biochemical analyses of the representative T207I mutant demonstrated that the mutation affected neither spectral nor multimerization properties of CrPHOT. Hence, the N-terminal flanking region of LOV2, as is the case with the C-terminal flanking Jα region, appears to play a crucial role in the regulation of kinase activity in phototropin

    Transient conformational fluctuation of TePixD during a reaction.

    Get PDF
    生体タンパク質反応の鍵となる「揺らぎ」検出に成功 -新規薬剤探索の新指針に期待-. 京都大学プレスリリース. 2014-10-03.Knowledge of the dynamical behavior of proteins, and in particular their conformational fluctuations, is essential to understanding the mechanisms underlying their reactions. Here, transient enhancement of the isothermal partial molar compressibility, which is directly related to the conformational fluctuation, during a chemical reaction of a blue light sensor protein from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 (TePixD, Tll0078) was investigated in a time-resolved manner. The UV-Vis absorption spectrum of TePixD did not change with the application of high pressure. Conversely, the transient grating signal intensities representing the volume change depended significantly on the pressure. This result implies that the compressibility changes during the reaction. From the pressure dependence of the amplitude, the compressibility change of two short-lived intermediate (I1 and I2) states were determined to be +(5.6 ± 0.6) × 10(-2) cm(3)⋅mol(-1)⋅MPa(-1) for I1 and +(6.6 ± 0.7)×10(-2) cm(3)⋅mol(-1)⋅MPa(-1) for I2. This result showed that the structural fluctuation of intermediates was enhanced during the reaction. To clarify the relationship between the fluctuation and the reaction, the compressibility of multiply excited TePixD was investigated. The isothermal compressibility of I1 and I2 intermediates of TePixD showed a monotonic decrease with increasing excitation laser power, and this tendency correlated with the reactivity of the protein. This result indicates that the TePixD decamer cannot react when its structural fluctuation is small. We concluded that the enhanced compressibility is an important factor for triggering the reaction of TePixD. To our knowledge, this is the first report showing enhanced fluctuations of intermediate species during a protein reaction, supporting the importance of fluctuations

    Alloying Effects on the Stability of D022 γ”-Ni3M (M: Nb, Ta, V) Precipitates at Elevated Temperatures in Alloy 718 Type Ni-Based Alloys

    No full text
    The effects of alloying elements, M (M = Nb, Ta, and V), on the stability of D022 γ”-Ni3M precipitates at elevated temperatures were investigated in Ni-22Cr-based ternary and quaternary alloys using heat-treated diffusion-multiple and bulk samples with discrete chemical compositions, with a final goal to improve the precipitate stability and the temperature capability of the Alloy-718-type Ni-based superalloys. Our microstructural characterization indicated that a complete replacement of Nb with Ta stabilized the γ” precipitates at temperatures up to 800 °C. A partial replacement of Ta with V was found to stabilize the precipitates even at 900 °C. Differential scanning calorimetry and high-temperature X-ray diffraction experiments demonstrated that the D0a-Ni3M structure was stable at elevated temperatures in the Ni-Cr-Ta ternary system. Lattice parameter measurements at room temperature suggested that a partial replacement of Ta with V decreased the lattice misfit between the fcc γ matrix and the γ” precipitate phases along the a- and c-axes of the tetragonal γ” crystal structure. The improved γ” precipitate stability was discussed in terms of the chemical driving force, misfit strain, and diffusion kinetics viewpoints

    Pressure-sensitive reaction yield of the TePixD blue-light sensor protein

    Get PDF
    The effect of pressure on the dissociation reaction of the TePixD decamer was investigated by high-pressure transient grating (TG). The TG signal intensity representing the dissociation reaction of the TePixD decamer significantly decreased by applying a relatively small pressure. On the other hand, the reaction rate increased with increasing pressure. The equilibrium between the pentamer and the decamer was investigated by high-pressure dynamic light scattering. The results indicated that the fraction of the decamer slightly increased in the high-pressure region. From these measurements, it was concluded that the pressure-dependent signal intensity originated from the decrease of the quantum yield of the dissociation reaction of the decamer, indicating that this reaction efficiency is very sensitive to pressure. Using densimetry at high pressures, the compressibility was found to be pressure dependent even in a relatively low pressure range. We attributed the origin of the pressure-sensitive reaction yield to the decrease of compressibility at high pressure. Because the compressibility is related to the volume fluctuation, this observation suggests that the driving force for this reaction is fluctuation of the protein. The relationship between the cavities at the interfaces of the monomer units and the reactivity is also discussed

    Time-resolved fluctuation during the photochemical reaction of a photoreceptor protein: Phototropin1LOV2-linker

    Get PDF
    Although the relationship between structural fluctuations and reactions is important for elucidating reaction mechanisms, experimental data describing such fluctuations of reaction intermediates are sparse. In order to investigate structural fluctuations during a protein reaction, the compressibilities of intermediate species after photoexcitation of a phot1LOV2-linker, which is a typical LOV domain protein with the C-terminal linker including the J-α helix and used recently for optogenetics, were measured in the time-domain by the transient grating and transient lens methods with a high pressure optical cell. The yield of covalent bond formation between the chromophore and a Cys residue (S state formation) relative to that at 0.1 MPa decreased very slightly with increasing pressure. The fraction of the reactive species that yields the T state (linker-unfolded state) decreased almost proportionally with pressure (0.1-200 MPa) to about 65%. Interestingly, the volume change associated with the reaction was much more pressure sensitive. By combining these data, the compressibility changes for the short lived intermediate (S state) and the final product (T state) formation were determined. The compressibility of the S state was found to increase compared with the dark (D) state, and the compressibility decreased during the transition from the S state to the T state. The compressibility change is discussed in terms of cavities inside the protein. By comparing the crystal structures of the phot1LOV2-linker at dark and light states, we concluded that the cavity volumes between the LOV domain and the linker domain increase in the S state, which explains the enhanced compressibility

    Macromolecular crowding effects on reactions of TePixD (Tll0078).

    Get PDF
    To reveal macromolecular crowding effects on a chemical reaction of a BLUF (sensors of blue light using FAD) protein (PixD from a thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 [TePixD, Tll0078]), the photoreaction was studied at various concentrations of the macromolecule Ficoll-70 by UV/Vis absorption spectroscopy and the pulsed laser-induced transient grating (TG) method. The absorption spectrum did not change with varying concentration of Ficoll-70. The crowding did not affect the quantum yield of the spectral red shift reaction, recovery rate of the product, rate constant of the volume change reaction and the magnitude of the volume change. However, the magnitude of the TG signal representing the diffusion-sensitive conformation change significantly increased on addition of Ficoll-70. This dependence was attributed to the crowding effect on the TePixD decamer-pentamer equilibrium in the solution. This result indicates that the TePixD reaction is more efficient in cellular than in in vitro conditions

    Light-Induced Conformational Change and Transient Dissociation Reaction of the BLUF Photoreceptor Synechocystis PixD (Slr1694).

    Get PDF
    The light-induced reaction of the BLUF (blue light photoreceptor using flavin adenine dinucleotide) photoreceptor PixD from Synechocystis sp. PCC6803 (Slr1694) was investigated using the time-resolved transient grating method. A conformational change coupled with a volume contraction of 13 mL mol(-1) was observed with a time constant of 45 ms following photoexcitation. At a weak excitation light intensity, there were no further changes in volume and diffusion coefficient (D). The determined D-value (3.7×10(-11) m(2) s(-1)) suggests that PixD exists as a decamer in solution, and this oligomeric state was confirmed by size-exclusion chromatography and blue native polyacrylamide gel electrophoresis. Surprisingly, by increasing the excitation laser power, we observed a large increase in D with a time constant of 350 ms following the volume contraction reaction. The D-value of this photoproduct species (7.5×10(-11) m(2) s(-1)) is close to that of the PixD dimer. Combined with transient grating and size-exclusion chromatography measurements under light-illuminated conditions, the light-induced increase in D was attributed to a transient dissociation reaction of the PixD decamer to a dimer. For the M93A-mutated PixD, no volume or D-change was observed. Furthermore, we showed that the M93A mutant did not form the decamer but only the dimer in the dark state. These results indicate that the formation of the decamer and the conformational change around the Met residue are important factors that control the regulation of the downstream signal transduction by the PixD photoreceptor
    corecore