2,093 research outputs found

    Magnetic digital flop of ferroelectric domain with fixed spin chirality in a triangular lattice helimagnet

    Full text link
    Ferroelectric properties in magnetic fields of varying magnitude and direction have been investigated for a triangular-lattice helimagnet CuFe1-xGaxO2 (x=0.035). The magnetoelectric phase diagrams were deduced for magnetic fields along [001], [110], and [1-10] direction, and the in-plane magnetic field was found to induce the rearrangement of six possible multiferroic domains. Upon every 60-degree rotation of in-plane magnetic field around the c-axis, unique 120-degree flop of electric polarization occurs as a result of the switch of helical magnetic q-vector. The chirality of spin helix is always conserved upon the q-flop. The possible origin is discussed in the light of the stable structure of multiferroic domain wall.Comment: 5 pages, 4 figures. Accepted in Phys. Rev. Let

    Magnetocaloric properties of nanocrystalline La0.125_{0.125}Ca0.875_{0.875}MnO3_{3}

    Full text link
    Some recent experimental studies show the invisibility of antiferromagnetic transition in the cases of manganites when their particle size is reduced to nanometer scale. In complete contrast to these cases, we have observed the signature of antiferromagnetic transition in the magnetocaloric properties of nanocrystalline La0.125_{0.125}Ca0.875_{0.875}MnO3_{3} of average particle size 70 and 60 nm similar to its polycrystalline bulk form. The system exhibit inverse magnetocaloric effect in its polycrystalline and nanocrystalline form. An extra ferromagnetic phase is stabilized at low temperature for the sample with particle size ∼60\sim 60 nm.Comment: 3 Figure

    Impurity-doping induced ferroelectricity in frustrated antiferromagnet CuFeO2

    Full text link
    Dielectric responses have been investigated on the triangular-lattice antiferromagnet CuFeO2 and its site-diluted analogs CuFe1-xAlxO2 (x=0.01 and 0.02) with and without application of magnetic field. We have found a ferroelectric behavior at zero magnetic field for x=0.02. At any doping level, the onset field of the ferroelectricity always coincides with that of the noncollinear magnetic structure while the transition field dramatically decreases to zero field with Al doping. The results imply the further possibility of producing the ferroelectricity by modifying the frustrated spin structure in terms of site-doping and external magnetic field.Comment: 4 pages, 4 figure

    Experimental band structure of the nearly half-metallic CuCr2_2Se4_4: An optical and magneto-optical study

    Get PDF
    Diagonal and off-diagonal optical conductivity spectra have been determined form the measured reflectivity and magneto-optical Kerr effect (MOKE) over a broad range of photon energy in the itinerant ferromagnetic phase of CuCr2_2Se4_4 at various temperatures down to T=10 K. Besides the low-energy metallic contribution and the lower-lying charge transfer transition at EE≈\approx2 eV, a sharp and distinct optical transition was observed in the mid-infrared region around EE==0.5 eV with huge magneto-optical activity. This excitation is attributed to a parity allowed transition through the Se-Cr hybridization-induced gap in the majority spin channel. The large off-diagonal conductivity is explained by the high spin polarization in the vicinity of the Fermi level and the strong spin-orbit interaction for the related charge carriers. The results are discussed in connection with band structure calculations
    • …
    corecore