1,723 research outputs found

    Temperature-dependent photoemission spectral weight transfer and chemical potential shift in Pr1−x_{1-x}Cax_xMnO3_3 : Implications for charge density modulation

    Full text link
    We have studied the temperature dependence of the photoemission spectra of Pr1−x_{1-x}Cax_xMnO3_3 (PCMO) with x=0.25x=0.25, 0.3 and 0.5. For x=0.3x=0.3 and 0.5, we observed a gap in the low-temperature CE-type charge-ordered (CO) phase and a pseudogap with a finite intensity at the Fermi level (EFE_F) in the high-temperature paramagnetic insulating (PI) phase. Within the CO phase, the spectral intensity near EFE_F gradually increased with temperature. These observations are consistent with the results of Monte Carlo simulations on a model including charge ordering and ferromagnetic fluctuations [H. Aliaga {\it et al.} Phys. Rev. B {\bf 68}, 104405 (2003)]. For x=0.25x=0.25, on the other hand, little temperature dependence was observed within the low-temperature ferromagnetic insulating (FI) phase and the intensity at EFE_F remained low in the high-temperature PI phase. We attribute the difference in the temperature dependence near EFE_F between the CO and FI phases to the different correlation lengths of orbital order between both phases. Furthermore, we observed a chemical potential shift with temperature due to the opening of the gap in the FI and CO phases. The doping dependent chemical potential shift was recovered at low temperatures, corresponding to the disappearance of the doping dependent change of the modulation wave vector. Spectral weight transfer with hole concentration was clearly observed at high temperatures but was suppressed at low temperatures. We attribute this observation to the fixed periodicity with hole doping in PCMO at low temperatures.Comment: 5pages, 7figure

    Experimental band structure of the nearly half-metallic CuCr2_2Se4_4: An optical and magneto-optical study

    Get PDF
    Diagonal and off-diagonal optical conductivity spectra have been determined form the measured reflectivity and magneto-optical Kerr effect (MOKE) over a broad range of photon energy in the itinerant ferromagnetic phase of CuCr2_2Se4_4 at various temperatures down to T=10 K. Besides the low-energy metallic contribution and the lower-lying charge transfer transition at EE≈\approx2 eV, a sharp and distinct optical transition was observed in the mid-infrared region around EE==0.5 eV with huge magneto-optical activity. This excitation is attributed to a parity allowed transition through the Se-Cr hybridization-induced gap in the majority spin channel. The large off-diagonal conductivity is explained by the high spin polarization in the vicinity of the Fermi level and the strong spin-orbit interaction for the related charge carriers. The results are discussed in connection with band structure calculations
    • …
    corecore